[an error occurred while processing this directive]
暴雨灾害
       首页|  期刊介绍|  编 委 会|  征稿简则|  期刊订阅|  下载中心|  编辑部公告|  联系我们


暴雨灾害  2016, Vol. 35 Issue (5): 415-426    DOI:
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索  |   
梅雨锋西段持续性暴雨的环境场特征及贵阳极端降水成因
杜小玲,吴磊,杨秀庄,卢璐,魏涛,余清
(贵州省气象台,贵阳 550002)
Analysis of environment conditions of a sustained heavy rain event occurred in western Meiyu front and cause of extreme precipitation in Guiyang
DU Xiaoling, WU Lei, YANG Xiuzhuang, LU Lu,WEI Tao, YU Qing
(Guizhou Meteorological Observatory, Guiyang 550002 )
 全文: PDF (11655 KB)   HTML ( 输出: BibTeX | EndNote (RIS)      背景资料
摘要 利用多种资料分析了2014年7月13—17日贵州持续性暴雨过程的中尺度环境场特征及贵阳极端降水成因,并以多个时次不同要素资料进行合成分析,构建此次梅雨锋西段持续性暴雨的天气学模型。结果表明:(1) 此次贵州持续性暴雨发生在单阻型梅雨稳定的背景下,当地持续3~4 d的强降水由中低层低涡切变、低空急流及地面静止锋(梅雨锋)共同作用造成。(2) 梅雨锋雨带的建立、维持及移动造成贵州不同区域出现强降水。此次过程梅雨锋雨带对贵州的影响分四个阶段,其中,第三阶段梅雨锋西段缓慢南压过程中多个β中尺度云团更替、合并及缓慢移动造成贵阳及周边部分县市降水量突破历史极值。(3) 中低纬度系统相互作用使水汽输送异常偏强。7月16日白天当年第9号超强台风“威马逊”进入我国南海海面后促使副热带高压西侧向北输送的水汽加强,该水汽与来自孟加拉湾的强盛西南暖湿气流在贵州上空汇合、加强,形成异常偏强的水汽通量及水汽辐合中心,这可能是贵阳极端降水发生的重要原因。(4) 相比2010—2014年5—9月贵阳发生的另外4场大暴雨过程,该过程更长的降水持续时间可能是贵阳极端降水发生的另一重要原因。(5) 贵阳强降水期间,强降水的雷达回波表现为层状云-积云混合降水回波,并具有低质心暖云降水特征,同时径向速度图上可见强劲西南急流及中尺度气旋性辐合。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
作者相关文章
关键词持续性暴雨   极端降水   天气学模型   梅雨锋西段   贵阳     
Abstract: Based on routine upper-air and surface observations, NCEP/FNL reanalysis data and TBB data from FY-2E satellite cloud images, we have investigated the meso-scale environmental field features of a sustained heavy rain event occurred in western Meiyu front in Guiyang from July 13 to 17 in 2014 and the cause of extreme precipitation in Guiyang, and then established the synoptic pattern of this event by the synergetic analysis of multi-element data. Results are as follows. (1) This event occurred in the background of a stable single blocking high type Meiyu. The severe precipitation continued for 3-4 days in Guizhou is caused by the mutual effect of shear line with low vortex in the mid- and low-level, low-level jet and the surface stationary front (Meiyu front). (2) The origination, maintenance and movement of rainband with Meiyu front cause the severe precipitation in the different regions of Guizhou. In terms of this event, the effect of rainband with Meiyu front on Guizhou can be divided into four stages, of which at the third stage the replacing, merging and slow moving of several β-mesoscale convective cloud clusters make precipitation in Guiyang and some surrounding counties exceed historical maximum during the slow southward movement of western Meiyu front. (3) The interaction between systems in the md- and low-latitudes results in abnormal and strong water vapor transport. Super severe typhoon (No.1409) Rammasun entered the South China Sea on July 16, 2014 makes northerly water vapor transport in the western side of subtropical high intensify, and it converges southwest warm and wet airflow from the Bay of Bengal to Guizhou to form an intensive center of water vapor flux and vapor convergence, which is considered to be the major cause for the extreme precipitation in Guiyang. (4) Comparing to the other 4 heavy rainstorm events occurred in Guiyang between May and September from 2010 to 2014, the long duration of precipitation for this event may be another major cause for the extreme precipitation. (5) During the severe precipitation in Guiyang, the radar echo of severe precipitation is observed to be characterized by strtiform cloud mixed cumulus, low centroid and warm cloud precipitation. Meanwhile, strong southwest jet stream and mesoscale cyclonical convergence are evident in the radial velocity chart.
Key wordssustained heavy rain   extreme precipitation   synoptic model   western Meiyu front   Guiyang   
引用本文:   
.2016. 梅雨锋西段持续性暴雨的环境场特征及贵阳极端降水成因[J]. 暴雨灾害, 35(5): 415-426.
.2016. Analysis of environment conditions of a sustained heavy rain event occurred in western Meiyu front and cause of extreme precipitation in Guiyang[J]. Torrential Rain and Disasters, 35(5): 415-426.
 
没有本文参考文献
[1] 毛紫怡, 李国平, 许霖. 湖南一次持续性暴雨过程的水汽输送与收支特征[J]. 暴雨灾害, 2021, 40(5): 513-522.
[2] 华雯丽, 杨晓霞, 田雪珊, 李恬, 宋嘉佳, 张磊. 山东省雷暴大风天气学分型与物理诊断量统计特征[J]. 暴雨灾害, 2021, 40(4): 362-373.
[3] 杨军勇, 苏爱芳. 河南省暖季小时极端降水时空分布特征[J]. 暴雨灾害, 2021, 40(2): 153-159.
[4] 王孝慈, 李双君, 张家国. 湖北省夏季引发极端降水的MCS统计特征分析[J]. 暴雨灾害, 2021, 40(2): 147-152.
[5] 张超, 罗伯良, 彭莉莉, 谢傲, 李易芝. 湖南6月区域持续性暴雨的强信号及预报概念模型[J]. 暴雨灾害, 2021, 40(1): 37-43.
[6] 李晓容, 高青云, 付世军. 四川盆地东北部三次持续性暴雨过程水汽输送特征分析[J]. 暴雨灾害, 2020, 39(3): 234-240.
[7] 李易芝, 罗伯良, 彭莉莉, 张超. 2017年6月下旬湖南持续性暴雨动力因子诊断分析[J]. 暴雨灾害, 2020, 39(1): 10-19.
[8] 潘国艳, 曹夏禹, 张翔, 陶士勇. 赣江流域近50 a来极端降水时空变化特征[J]. 暴雨灾害, 2020, 39(1): 102-108.
[9] 沈晓琳, 周宁芳, 杨舒楠, 苗芮. 2015年冬季云南两次极端降水事件及环流异常特征分析[J]. 暴雨灾害, 2019, 38(4): 380-385.
[10] 王俊超, 彭涛, 王清. 乌江流域极端降水时空分布特征及重现期分析[J]. 暴雨灾害, 2019, 38(3): 267-275.
[11] 常煜, 隋沆锐, 赵斐. 内蒙古夏季极端降水持续性分析与时空分布特征[J]. 暴雨灾害, 2019, 38(2): 161-168.
[12] 申莉莉, 张迎新, 隆璘雪, 孙云, 康增妹. 1981-2016年京津冀地区极端降水特征研究[J]. 暴雨灾害, 2018, 37(5): 428-434.
[13] 张家国,王珏,吴涛,周金莲,钟敏,王珊珊,黄小彦,李双君,韩芳蓉,王孝慈. 长江中游地区极端降水主要天气系统类型分析[J]. 暴雨灾害, 2018, 37(01): 14-23.
[14] 唐永兰,于晓晶,徐桂荣,李颖. 近54 a湖北极端降水的变化特征及其与城市化的关系研究[J]. 暴雨灾害, 2018, 37(01): 73-82.
[15] 谌伟,岳阳,刘佩廷,邓红,张蒙蒙. 鄂东北一次特大暴雨过程的两个中尺度对流系统分析[J]. 暴雨灾害, 2017, 36(04): 357-364.
版权所有 © 2011《暴雨灾害》编辑部    鄂ICP备06018784号-3
地址: 湖北省武汉市东湖高新技术开发区金融港二路《暴雨灾害》编辑部
 邮编: 430205 Tel: 027-81804935   E-mail: byzh7939@163.com
技术支持: 北京玛格泰克科技发展有限公司