[an error occurred while processing this directive]
暴雨灾害
       首页|  期刊介绍|  编 委 会|  征稿简则|  期刊订阅|  下载中心|  编辑部公告|  联系我们


暴雨灾害  2016, Vol. 35 Issue (5): 427-436    DOI:
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索  |   
西安“8.3”大暴雨的环境条件与中尺度特征分析
张雅斌1123
(1. 陕西省西安市气象台,西安 710016;2. 陕西省气象台,西安 721014;3. 陕西省渭南市气象台,渭南 714000)
Environment conditions and mesoscale characteristics of an extremely rainstorm event in Xi’an on 3 August 2015
ZHANG Yabin 1123
(1. Xi’an Meteorological Observatory of Shaanxi Province, Xi’an 710016; 2. Shaanxi Meteorological Obser;3. Weinan Meteorological Observatory of Shaanxi Province, Weinan 714000)
 全文: PDF (9631 KB)   HTML ( 输出: BibTeX | EndNote (RIS)      背景资料
摘要 基于陕西WARMS模式、FY2F卫星云图、多普勒天气雷达和地面加密观测等资料,分析总结了2015年8月3日西安致灾大暴雨过程(以下简称“8.3”大暴雨)的环境条件与中尺度特征。结果表明:该过程强度大、突发性强、降水落区集中,中低层快速东移南压的冷式切变线和地面冷锋是其主要影响系统,地面切变辐合偏弱、整层偏南水汽输送及其辐合不明显是大暴雨持续时间短、范围小的重要原因;地面冷锋后部偏北风遇秦岭北麓地形作用形成初始对流,高层北路冷空气侵入导致不稳定能量增大,二者共同作用触发对流与能量强烈释放,形成β中尺度对流系统,产生大暴雨;低层辐合、高层辐散和垂直上升运动中心偏强而无次级环流,造成暴雨范围小、持续时间短;暴雨区主要位于对流云团云顶亮温(TBB)梯度大值区,与3 h显著正变压中心梯度大值区和切变线交汇点南侧对应;雷达强回波区呈垂直塔状,质心低,属热带海洋型降水回波。在不稳定层结尤其是低层超绝热状态下,加强雷达资料分析研判,跟踪紧邻山地杂波的、孤立的、中心像素点反射率超过60 dBz的小尺度对流单体发展,可提前发布秦岭北麓暴雨预警。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词大暴雨   环境条件   中尺度特征   WARMS模式     
Abstract: Based on WARMS model, FY2F satellite cloud images, Doppler weather radar data and observations from intensive automatic weather station (AWS), we have analyzed the environment conditions and mesoscale characteristics of an extremely disastrous rainstorm event (hereinafter referred to as“8.3”event) occurred in Xi’an on 3 August 2015. The results indicate that the“8.3”event is characterized by high intensity, strong burst and concentrated precipitation zone, whose major influencing systems are a cold shear line that rapidly moved eastwards and southwards in the mid- and low-level and a surface cold front. The surface shear is relatively weak. Vertically integrated water vapor transportation from south and water vapor convergence are unobvious, which lead to short precipitation duration and small rain area during the“8.3”event. Northerly wind at the rear of the surface cold front encountering the northern Qinling Mountains triggers initial convection,and the cold air intruding from upper level by north route results in the increase of unstable energy. Such combined condition triggers convection and intensive energy release, which in turn induces β-mesoscale convective system and generate extreme rainstorm. Convergence in the low-level, divergence in the upper level, strong vertical upward movement center and no secondary circulation make precipitation duration short and rain area small during the“8.3”event. The rainstorm occurs near the area with great value of brightness temperature gradient,which corresponds with the positive 3-hourly pressure difference center and the south side of shear line intersection point. Strong radar echo is observed to show vertical tower-shape and low centroid height, which is a characteristic of the tropical marine precipitation echo. Under unstable stratification, especially when low layer is super adiabatic, through analysis and judgment of radar data and especially small-scale convection cells with reflectivity factor greater than 60 dBz which is adjacent to but separate from mountain clutter echo, we can issue the early warning of rainstorm occurred in the northern Qinling Mountains ahead of time.
Key wordsstorm   environment condition   mesoscale characteristics   WARMS model   
引用本文:   
.2016. 西安“8.3”大暴雨的环境条件与中尺度特征分析[J]. 暴雨灾害, 35(5): 427-436.
.2016. Environment conditions and mesoscale characteristics of an extremely rainstorm event in Xi’an on 3 August 2015[J]. Torrential Rain and Disasters, 35(5): 427-436.
 
没有本文参考文献
[1] 陈云辉, 许爱华, 许彬, 陈娟, 李婕. 江西一次极端雷暴大风过程的中尺度特征与成因分析[J]. 暴雨灾害, 2019, 38(2): 126-134.
[2] 聂云, 周继先, 顾欣, 周艳, 杜小玲. “6.18”梅雨锋西段黔东南大暴雨个例诊断分析[J]. 暴雨灾害, 2018, 37(5): 445-454.
[3] 郭宇光, 钱燕珍, 方艳莹, 朱宪春, 潘灵杰, 陆峰毅. “杜鹃”登陆减弱后所致的宁波大暴雨成因分析[J]. 暴雨灾害, 2018, 37(4): 356-363.
[4] 赵玉春,王叶红,陈健康,黄惠镕. 莫兰蒂台风(2016)登陆前后精细结构及其引发福建特大暴雨的模拟研究[J]. 暴雨灾害, 2018, 37(02): 135-148.
[5] 徐明,黄治勇,高琦. 2016年5月20日广东信宜特大暴雨中尺度对流系统特征分析[J]. 暴雨灾害, 2018, 37(01): 32-40.
[6] 杨芳园,沈茜,周稀,邹灵宇,段燕楠,潘娅婷,李晓鹏. 云南省一次飑线大风天气过程的中尺度特征分析[J]. 暴雨灾害, 2018, 37(01): 48-56.
[7] 赵大军,姚秀萍. 北京“7·21”特大暴雨过程中的干侵入指数特征研究[J]. 暴雨灾害, 2017, 36(6): 527-534.
[8] 林毅,陈思学,吕思思. 1601号“尼伯特”台风特大暴雨的中尺度系统特征与成因分析[J]. 暴雨灾害, 2017, 36(6): 542-549.
[9] 顾佳佳,武威. 2016年“7.9”豫北特大暴雨过程的中尺度特征分析[J]. 暴雨灾害, 2017, 36(05): 440-452.
[10] 袁正旋,覃军,曾向红,吴浩. 湖南岳阳一次大暴雨过程近地层湍流特征分析[J]. 暴雨灾害, 2017, 36(05): 431-439.
[11] 姚蓉,唐佳,兰明才,唐明晖,陈红专. 一次混合强对流天气的环境条件及演变特征分析[J]. 暴雨灾害, 2017, 36(03): 217-226.
[12] 段伯隆,张文龙,刘海文,王心月. 北京“7.21”特大暴雨过程暖区降水和锋面降水的时空分布特征[J]. 暴雨灾害, 2017, 36(02): 108-117.
[13] 闵爱荣,廖移山,邓雯. 2008—2013年我国暴雨分布情况及变化趋势分析[J]. 暴雨灾害, 2016, 35(6): 576-584.
[14] 朱星球, 王咏青, 许爱华, 陈翔翔. 东风波对江西强对流天气环境条件的影响分析[J]. 暴雨灾害, 2016, 35(3): 210-219.
[15] 王红燕1,周丹丹1,王叶红2. SWAN 产品在“2012·7”沙澧河流域特大暴雨过程中的应用[J]. 暴雨灾害, 2015, 34(3): 239-.
版权所有 © 2011《暴雨灾害》编辑部    鄂ICP备06018784号-3
地址: 湖北省武汉市东湖高新技术开发区金融港二路《暴雨灾害》编辑部
 邮编: 430205 Tel: 027-81804935   E-mail: byzh7939@163.com
技术支持: 北京玛格泰克科技发展有限公司