[an error occurred while processing this directive]
暴雨灾害
       首页|  期刊介绍|  编 委 会|  征稿简则|  期刊订阅|  下载中心|  编辑部公告|  联系我们


暴雨灾害  2016, Vol. 35 Issue (5): 437-444    DOI:
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索  |   
一次特大暴雨过程中涡旋暴雨云团的演变特征分析
李德俊1, 2,李跃清2 ,柳草3 ,熊守权1 ,熊洁1
(1. 湖北省气象服务中心,武汉 430205;2. 中国气象局成都高原气象研究所,成都 610072;3. 武汉中心气象台,武汉 430074)
Evolution characteristics of vortex cloud clusters in an excessive torrential rainfall event
LI Dejun1, 2, LI Yueqing2, LIU Cao3, XIONG Shouquan1, XIONG Jie1
(1. Hubei Meteorological Service Center, Wuhan 430205; 2. Chengdu Institute of Plateau Meteorology, CMA, Chengdu 610072;3. Wuhan Central Meteorological Observatory, Wuhan 430074)
 全文: PDF (3947 KB)   HTML ( 输出: BibTeX | EndNote (RIS)      背景资料
摘要 利用MODIS卫星、多普勒天气雷达和地面观测资料,对2013年6月30日四川遂宁一次特大暴雨天气过程中涡旋暴雨云团的演变特征进行了详细分析。主要结论是:(1) 涡旋暴雨云团与其北侧的积云云团呈前倾结构,说明暴雨云团经历了先由弱积云发展为深对流云、再到云毡的逐步发展成熟过程;(2) 涡旋暴雨云团从南到北围绕低涡中心东侧最多时有6条降水云带,其中南部的降水云带碰并增长带(-1~-10 ℃层)厚度大于凝结增长带(3~-1 ℃层)厚度,北部降水云带刚好相反,表明南部以碰并增长过程为优势物理过程,利于较快拓宽云滴谱,使得云滴迅速长大形成雨滴降落下来;(3) 涡旋暴雨云团中最强降水云带位于其南部的资阳至遂宁一带,分析雷达回波垂直剖面图发现有8个对流单体分布在云带中,且不断有新生单体移向遂宁,并从南至北依次增强,形成“列车效应”,其成熟阶段-10 ℃高度以下碰并增长很充分,厚度为6 km左右,-10 ℃高度以上存在一个深厚的冰相增长带,厚度5~8 km,发展到成熟阶段碰并增长和冰相过程均为优势微物理过程,云中碰并增长和冰化增长过程向下传递明显,这些特点利于快速形成降水,导致当日10—17时遂宁站连续出现强降水。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
作者相关文章
关键词涡旋暴雨云团   螺旋云带   碰并增长过程   冰相增长过程   列车效应     
Abstract: Evolution characteristics of vortex cloud clusters in an excessive torrential rainfall event occurred in Suining, Sichuan on 30 June 2013 are analyzed in detail by using MODIS satellite data, Doppler weather radar data and surface meteorological observations. The major results are as follows. (1) The vortex cloud clusters caused the torrential rainfall. Many cumulus clusters in the north side presented a for-ward-tilling structure, which shows that cloud clusters accompanied by torrential rainfall experienced a transition from weak cumulus to deep convective clouds firstly and to cloud felt lastly. (2) As for vortex cloud clusters that caused torrential rainfall, there are six spiral cloud bands at most from south to north around the eastern side of the vortex center. The thickness of collision-coalescence growth (from -10℃ to -1℃) greater than that of the condensation growth (from -1℃ to 3℃) in the southern spiral cloud band as opposed to those in the northern spiral cloud band, which suggests that the predominant microphysical process is collision-coalescence growth during the development of southern convective cloud clusters, and then the cloud droplet spectrum is broaden faster to make the formation of cloud droplets grow rapidly into raindrops while falling down. (3) The strongest spiral cloud bands locate in the southern area of vortex cloud clusters caused torrential rainfall from Ziyang to Suining. The eight convective cells are found in the southern spiral cloud band in the vertical cross section of radar reflectivity factor, and newborn cells moved continuously to Suining and strengthen in order from south to north, thus resulting in“train effect”. During the mature stage of these cells, the collision-coalescence and condensation growth (thickness is about 6 km) are active below height of -10 ℃ level, and there is a thick ice growth layer (thickness is 5-8 km) above height of -10 ℃ level. When these cells are mature, both collision-co-alescence growth and ice-phase are the predominant microphysical processes, and collision-coalescence growth zone and glaciations growth zone in the cloud propagate dramatically down to the lower levels from the development to the mature stage. These features are advantageous to the rapid formation of precipitation, and resulting in continuous severe precipitation in Suining from10:00 BT to 17:00 BT on 30 June 2013.
Key wordsvortex cloud cluster   spiral cloud band   collision-coalescence growth   ice growth   train effect   
引用本文:   
.2016. 一次特大暴雨过程中涡旋暴雨云团的演变特征分析[J]. 暴雨灾害, 35(5): 437-444.
.2016. Evolution characteristics of vortex cloud clusters in an excessive torrential rainfall event[J]. Torrential Rain and Disasters, 35(5): 437-444.
 
没有本文参考文献
[1] 尉英华, 陈宏, 刘一玮, 林晓萌. 盛夏一次地面冷锋过境引发局地大暴雨的成因分析[J]. 暴雨灾害, 2021, 40(4): 393-400.
[2] 聂云, 周继先, 杨帆, 杨群, 杜小玲. 梵净山东南侧夏季暖区暴雨中尺度系统演变与环境场特征个例分析[J]. 暴雨灾害, 2021, 40(2): 125-135.
[3] 李明华, 陈芳丽, 姜帅, 甘泉, 林汇丰, 曾丹丹, 李娇娇, 马泽义, 张子凡. “18.8”粤东暴雨中心极端强降水“列车效应”分析[J]. 暴雨灾害, 2019, 38(4): 329-337.
[4] 梁维亮, 翟丽萍, 农孟松, 李向红. 广西一次深秋暴雨过程降水时空差异成因分析[J]. 暴雨灾害, 2019, 38(1): 7-16.
[5] 徐明,黄治勇,高琦. 2016年5月20日广东信宜特大暴雨中尺度对流系统特征分析[J]. 暴雨灾害, 2018, 37(01): 32-40.
[6] 马月枝,张霞,胡燕平. 2016年7月9日新乡暖区特大暴雨成因分析[J]. 暴雨灾害, 2017, 36(6): 557-565.
[7] 支树林,包慧濛,张弛. 一次夜间发展起来的大暴雨的中尺度对流条件及特征分析[J]. 暴雨灾害, 2017, 36(1): 42-52.
[8] 杨莲梅,李建刚,刘晶,刘雯. 西北气流下乌鲁木齐短时强降水中小尺度特征个例分析[J]. 暴雨灾害, 2017, 36(05): 389-396.
[9] 谌伟,岳阳,刘佩廷,邓红,张蒙蒙. 鄂东北一次特大暴雨过程的两个中尺度对流系统分析[J]. 暴雨灾害, 2017, 36(04): 357-364.
[10] 姚蓉,唐佳,兰明才,唐明晖,陈红专. 一次混合强对流天气的环境条件及演变特征分析[J]. 暴雨灾害, 2017, 36(03): 217-226.
[11] 牛淑贞,张一平,梁俊平,袁小超. 郑州市两次短时强降水过程的环境条件和中尺度特征对比[J]. 暴雨灾害, 2016, 35(2): 138-147.
[12] 陈德花,张伟,尹烈,孙琼博. 海贝思”残留螺旋云带的中尺度暴雨成因分析[J]. 暴雨灾害, 2015, 34(02): 133-142.
[13] 卢焕珍,张楠,刘一玮. 天津一次局地大暴雨中尺度对流系统组织化特征与成因[J]. 暴雨灾害, 2015, 34(01): 17-.
[14] 孙明生,李国旺,尹青,牛震宇,高黎明. “7·21”北京特大暴雨成因分析(I): 天气特征、层结与水汽条件[J]. 暴雨灾害, 2013, 32(3): 210-217.
[15] 孙明生,杨力强,尹青,牛震宇,高黎明. “7·21”北京特大暴雨成因分析(Ⅱ):垂直运动、
风垂直切变与地形影响
[J]. 暴雨灾害, 2013, 32(3): 218-223.
版权所有 © 2011《暴雨灾害》编辑部    鄂ICP备06018784号-3
地址: 湖北省武汉市东湖高新技术开发区金融港二路《暴雨灾害》编辑部
 邮编: 430205 Tel: 027-81804935   E-mail: byzh7939@163.com
技术支持: 北京玛格泰克科技发展有限公司