[an error occurred while processing this directive]
暴雨灾害
       首页|  期刊介绍|  编 委 会|  征稿简则|  期刊订阅|  下载中心|  编辑部公告|  联系我们


暴雨灾害  2017, Vol. 36 Issue (03): 193-199    DOI: 10.3969/j.issn.1004-9045.2017.03.001
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索  |   
京津冀地区雷暴大风天气的统计分析
柴东红1,2,3,杨晓亮1,3,吴紫煜4,闫雪瑾1,裴宇杰1,李宗涛1,张义军2
1. 河北省气象台,石家庄 050021;2. 中国气象科学研究院灾害天气国家重点实验室,北京 100081;
3. 河北省气象与生态环境重点实验室,石家庄 050021;4. 中国气象局气象干部培训学院,北京100081
The statistical analysis of thunderstorm gales over Beijing-Tianjin-Hebei region
CHAI Donghong1,2,3,YANG xiaoliang1,3,WU Ziyu4,YAN XueJin1,PEI YuJie1, LI Zongtao1,ZHANG YiJun2
1. Hebei Meteorological Observatory, ShiJiazhuang 050021; 2. State Key Laboratory of Severe Weather, Chinese Academy of
Meteorological Sciences, BeiJing
100081; 3. Hebei Eeoenvironmental Monitoring Laboratory, ShiJiazhuang
050021;
4.
China Meteorological Administration Training Centre, BeiJing 100081
 全文: PDF (1463 KB)   HTML ( 输出: BibTeX | EndNote (RIS)      背景资料
摘要 根据灾情观测资料、重要天气报告资料,从多角度对京津冀地区雷暴大风进行了统计分析,结合MICAPS资料、NCEP资料、自动站资料以及多普勒天气雷达资料,讨论了雷暴大风形成的天气条件、类型和风暴特征,结果表明:雷暴大风主要分布在北京西北部山区、沿海地区以及西北部高原,平原相对较少,近30 a演变趋势为振荡减少。雷暴大风最早始于3月中旬,最晚终于11月上旬,6月下旬达到顶峰,6、7月份为最多月份,14—20时为日高峰期。雷暴大风的旬、月
分布与冷空气活动、南支急流的位置有关;雷暴大风的形成,5、9月份需要更高的热力条件和动力条件,6、7、8月份需要更高的不稳定条件和能量条件;西北气流型和低涡型是产生雷暴大风日数最多的天气类型。各类型天气系统的月分布与冷空气活动、副热带高压位置以及南支急流的强度、位置有关;雷暴大风的范围与影响系统的尺度和强度有关,冷锋和低涡出现区域性雷暴大风天气的几率最高,且级别越高,冷锋的优势越明显;雷暴大风过程多单体风暴最多,飑线次之。
雷暴大风的范围与风暴的强弱有关,飑线、超级单体风暴是出现区域性雷暴大风几率最高的对流风暴,且级别越高,飑线的优势越明显。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
柴东红
杨晓亮
吴紫煜
闫雪瑾
裴宇杰
李宗涛
张义军
关键词雷暴大风;   时空分布;   物理参数;   天气系统;   对流风暴     
Abstract: Based on the observation data of disaster and significant weather report, the thunderstorm gale in Beijing-Tianjin-Hebei region is analysed from multiple perspectives. Specifically combined with the MICAPS data, NCEP data, automatic station data and Doppler weather radar data, the weather conditions, types and characteristics of thunderstorm gale are discussed. Results are as follows. Thunderstorm gales are mainly recorded in the mountains northwest of Beijing, coastal areas and the northwest plateau, but less in the plains. They present an oscillation decreasing trend in nearly 30 years. Thunderstorm gales first begin in mid-March, end in early November, while they happen most frequently in late June. They are often appear in June and July, and diurnally reach their peak during 14 PM to 20 PM. The ten-day and monthly distribution characteristics of thunderstorm gales are associated with cold air activity and the location of south branch jet stream. Higher thermal and dynamic conditions are favorable to the development of the thunderstorm gales in May and September, while higher instability and energy conditions are conducive to them in June, July and August. Weather types resulting in thunderstorm gale are mostly northwestly flow pattern and low vortex pattern. The monthly distribution characteristics of different synoptic systems are related to cold air activity,
the location of subtropical high, the location and intensity of south branch jet stream. The areas affected by thunderstorm gales are relevant to the scale and strength of the influencing system. Regional thunderstorm gales the most frequently occur in cold front and low vortex weather. Moreover, the stronger damaging wind is, the higher probability the cold front appears. The multi-cell storms most happen and squall line less appear in the event of thunderstorm gale. The scope of the gale is related to the intensity of the storm. Squall line and super-cell storm have the highest probability of occurence when thunderstorm gales happen. Furthermore, the stronger damaging wind is, the higher probability the squall line appears.
Key wordsthunderstorm gale;   temporal and spatial distribution;   physical parameter;   weather system;   convective storm   
引用本文:   
柴东红, 杨晓亮, 吴紫煜,等 .2017. 京津冀地区雷暴大风天气的统计分析[J]. 暴雨灾害, 36(03): 193-199.
CHAI Dong-Hong, YANG Xiao-Liang, WU Zi-Yu, et al .2017. The statistical analysis of thunderstorm gales over Beijing-Tianjin-Hebei region[J]. Torrential Rain and Disasters, 36(03): 193-199.
 
没有本文参考文献
[1] 杨芳园,沈茜,周稀,邹灵宇,段燕楠,潘娅婷,李晓鹏. 云南省一次飑线大风天气过程的中尺度特征分析[J]. 暴雨灾害, 2018, 37(01): 48-56.
[2] 卓鸿,王冀,霍苗,张菊醒,季思含,陈钰彤. 不同天气影响形势下首都国际机场雷暴的空间分布及移动特征[J]. 暴雨灾害, 2018, 37(01): 57-66.
[3] 周杰,黄勇,官莉,任靖,陈秋萍. 基于ISCCP DX数据的江淮对流系统特征分析[J]. 暴雨灾害, 2017, 36(1): 1-7.
[4] 黄晓璐,荀学义,赵斐. 内蒙古强对流天气时空演变特征分析[J]. 暴雨灾害, 2017, 36(03): 287-291.
[5] 马素艳,韩经纬,斯琴,荀学义,张和平. 冷涡背景下呼和浩特市冰雹特征分析[J]. 暴雨灾害, 2016, 35(6): 529-536.
[6] 刘瑞翔1,2,丁治英1,孙凌光3,黄海波1. 夏季江淮地区中尺度对流系统的统计特征分析[J]. 暴雨灾害, 2015, 34(3): 215-.
[7] 林志强,德庆,文胜军,王兴. 西藏高原汛期大到暴雨的时空分布和环流特征[J]. 暴雨灾害, 2014, 33(1): 73-.
[8] 王国荣,王令. 北京地区夏季短时强降水时空分布特征[J]. 暴雨灾害, 2013, 32(3): 276-279.
[9] 严仕尧,李昀英,齐琳琳,安洁,刘君. 华北产生雷暴大风的动力热力综合指标分析及应用[J]. 暴雨灾害, 2013, 32(1): 17-23.
[10] 陈晓燕;罗松;杨玲;. 黔西南州冰雹时空分布及春夏冰雹环境条件分析[J]. 暴雨灾害, 2010, 29(01): 51-55.
[11] 徐双柱;王晓玲;王平;涂诗玉;. 湖北省冬季大雪成因分析与预报方法研究[J]. 暴雨灾害, 2009, 28(04): 47-52.
[12] 陈孟琼;刘良玖;黄骏;. 张家界市近四十多年来强降水统计分析[J]. 暴雨灾害, 2008, 27(02): 66-71.
[13] 罗剑琴,熊传辉,付晓辉,王建国. 鄂西南两次典型冰雹天气特征的对比分析[J]. 暴雨灾害, 2004, 23(01): 5-8.
[14] 张艳,肖本权. 咸宁市雷暴活动的气候特征分析[J]. 暴雨灾害, 2003, 22(03): 18-19.
[15] 孙士型,居志刚. 三峡坝区一次强风暴天气的多普勒雷达回波特征[J]. 暴雨灾害, 2003, 22(02): 11-13.
版权所有 © 2011《暴雨灾害》编辑部    鄂ICP备06018784号-3
地址: 湖北省武汉市东湖高新技术开发区金融港二路《暴雨灾害》编辑部
 邮编: 430205 Tel: 027-81804935   E-mail: byzh7939@163.com
技术支持: 北京玛格泰克科技发展有限公司