[an error occurred while processing this directive]
暴雨灾害
       首页|  期刊介绍|  编 委 会|  征稿简则|  期刊订阅|  下载中心|  编辑部公告|  联系我们


暴雨灾害  2017, Vol. 36 Issue (6): 498-506    DOI: 10.3969/j.issn.1004-9045.2017.06.002
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索  |   
短时强降水和暴雨的区别与联系
孙继松
中国气象科学研究院灾害天气国家重点实验室,北京 100081
Differences and relationship between flash heavy rain and heavy rainfall
SUN Jisong
State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing 100081
 全文: PDF (5695 KB)   HTML ( 输出: BibTeX | EndNote (RIS)      背景资料
摘要 从物理机制、预报技术方法等方面,讨论了短时强降水和暴雨的异同。主要结论包括: (1) 充沛的大气可降水量是形成暴雨或极端短时强降水的必要条件,但对于非对流大尺度降水(层状云)过程,对流层低层的净水汽平流量或水汽通量辐合的强度是判断降水强度的核心因子,这也是大范围暴雨预报分析过程中的关键因素;对于中尺度层云降水过程,水汽垂直输送量和气柱内水汽的净平流量则同等重要;对于对流过程,如果不考虑蒸发过程,瞬时降水强度主要决定
于水汽垂直递减率(而非整层大气可降水量)和低层大气对流有效位能(CAPE)而不是整层大气的 CAPE。(2) 降水强度与实际有效凝结率(形成地面有效降水)关系密切,而有效凝结率与云的形态结构特征直接联系;从另一角度看,对流云的形态特征由大气层结状态和环境风垂直切变决定。(3) 对于天气尺度系统造成的大范围稳定性降水过程,降水的持续时间取决于天气系统的移动速度,更确切地说,是降水区域上空水汽辐合维持时间的长短;对于对流降水过程,降水持续时间
则取决于对流系统的尺度、移动速度和传播特征。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
作者相关文章
孙继松
关键词暴雨;   短时强降水;   降水强度;   水汽方程     
Abstract: In this paper, the similarities and differences between flash heavy rain and heavy rainfall are discussed from the aspects of physical mechanisms and prediction techniques. The main results are as follow. (1) Abundant precipitable water vapor is a necessary condition to form heavy rainfall or extremely flash heavy rain. For non-convective large-scale precipitation or stratiform cloud precipitation events, the intensity of net water vapor advection or water vapor flux convergence in the lower troposphere is the core factor to judge the precipitation intensity, which is also the key factor in the analysis and forecast of large-scale rainstorm. For mesoscale stratiform cloud precipitation events, the vertical transport volume of water vapor and the net advection of water vapor in air columns are equally important. For the convective events, if the evaporation is not considered, the intensity of instantaneous precipitation is mainly determined by the vertical decline rate of water vapor (not the whole atmospheric precipitable water) and the Convective Available Potential Energy (CAPE) in the low-level rather than CAPE of the whole atmosphere. (2) The precipitation intensity is closely related to the effective condensation rate that forms effective precipitation at the ground, and which is directly related to the shape structure of cloud. From another point of view, the shape characteristics of convective
clouds are determined by the atmospheric stratification and the vertical shear of ambient wind. (3) For the large-scale stable precipitation caused by synoptic scale systems, the duration of precipitation depends on the moving speed of the weather system, or more precisely, that of water vapor convergence over the precipitation area. For the convective precipitation events, the duration of precipitation depends on the scale, moving speed and propagation characteristics of the convective systems.
Key wordsheavy rainfall;   flash heavy rain;   precipitation intensity;   vapor equation   
引用本文:   
孙继松 .2017. 短时强降水和暴雨的区别与联系[J]. 暴雨灾害, 36(6): 498-506.
SUN Ji-Song .2017. Differences and relationship between flash heavy rain and heavy rainfall[J]. Torrential Rain and Disasters, 36(6): 498-506.
 
没有本文参考文献
[1] 徐双柱,陈静静,王青霞. 南岳山、庐山高山站风场对长江流域梅雨锋暴雨的指示作用[J]. 暴雨灾害, 2018, 37(3): 213-218.
[2] 张楠,何群英,刘彬贤,吴振玲,刘一玮,卢焕珍. 非典型环流形势下天津一次局地暴雨过程中尺度特征分析[J]. 暴雨灾害, 2018, 37(3): 230-237.
[3] 肖安,许爱华. 2016年华南地区一次大暴雨过程的空报原因分析[J]. 暴雨灾害, 2018, 37(02): 124-134.
[4] 赵玉春,王叶红,陈健康,黄惠镕. 莫兰蒂台风(2016)登陆前后精细结构及其引发福建特大暴雨的模拟研究[J]. 暴雨灾害, 2018, 37(02): 135-148.
[5] 陈德花,潘宁,张玲,张伟,荀爱萍. 海风锋及低压环流对闽东一次暴雨过程的影响分析[J]. 暴雨灾害, 2018, 37(02): 149-157.
[6] 徐明,黄治勇,高琦. 2016年5月20日广东信宜特大暴雨中尺度对流系统特征分析[J]. 暴雨灾害, 2018, 37(01): 32-40.
[7] 於琍,徐影,张永香. 近25 a中国暴雨及其引发的暴雨洪涝灾害影响的时空变化特征[J]. 暴雨灾害, 2018, 37(01): 67-72.
[8] 王智,范旭亮,于甜甜. 一次长三角地区暴雨过程的集合预报应用与分析[J]. 暴雨灾害, 2018, 37(01): 8-13.
[9] 马月枝,张霞,胡燕平. 2016年7月9日新乡暖区特大暴雨成因分析[J]. 暴雨灾害, 2017, 36(6): 557-565.
[10] 田付友,郑永光,张涛,曹艳察,盛杰. 我国中东部不同级别短时强降水天气的环境物理量分布特征[J]. 暴雨灾害, 2017, 36(6): 518-526.
[11] 赵大军,姚秀萍. 北京“7·21”特大暴雨过程中的干侵入指数特征研究[J]. 暴雨灾害, 2017, 36(6): 527-534.
[12] 林毅,陈思学,吕思思. 1601号“尼伯特”台风特大暴雨的中尺度系统特征与成因分析[J]. 暴雨灾害, 2017, 36(6): 542-549.
[13] 杨薇,冯文,李勋. 微物理过程和积云参数化方案对海南岛秋季暴雨模拟的影响[J]. 暴雨灾害, 2017, 36(1): 8-17.
[14] 田亚杰,王春明,崔强. 2015年5月19—20日两广地区暴雨过程数值模拟与诊断分析[J]. 暴雨灾害, 2017, 36(1): 18-25.
[15] 刘雨佳,张强,余予. 华南地区1961—2014年暴雨及典型暴雨事件统计分析[J]. 暴雨灾害, 2017, 36(1): 26-32.
版权所有 © 2011《暴雨灾害》编辑部    鄂ICP备06018784号-3
地址: 湖北省武汉市东湖高新技术开发区金融港二路《暴雨灾害》编辑部
 邮编: 430205 Tel: 027-81804935   E-mail: byzh7939@163.com
技术支持: 北京玛格泰克科技发展有限公司