[an error occurred while processing this directive]
暴雨灾害
       首页|  期刊介绍|  编 委 会|  征稿简则|  期刊订阅|  下载中心|  编辑部公告|  联系我们


暴雨灾害  2017, Vol. 36 Issue (6): 557-565    DOI: 10.3969/j.issn.1004-9045.2017.06.009
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索  |   
2016年7月9日新乡暖区特大暴雨成因分析
马月枝1,张霞2,胡燕平3
1. 河南省新乡市气象局,新乡 453003;2. 河南省气象台,郑州 450003;3. 河南省漯河市气象局,漯河 462300
Cause analysis of a warm-sector excessive heavy rainfall event in Xinxiang on 9 July 2016
MA Yuezhi1,ZHANG Xia2,HU Yanping3
1. Xinxiang Meteorological Office of Henan Province, Xinxiang 453003; 2. Henan Meteorological Observatory,
Zhengzhou
450003; 3. Luohe Meteorological Office of Henan Province, Luohe 462300
 全文: PDF (5730 KB)   HTML ( 输出: BibTeX | EndNote (RIS)      背景资料
摘要 利用常规气象观测资料、区域自动站资料、卫星云图和雷达产品及NCEP再分析资料,对2016年7月9日新乡暖区特大暴雨过程成因进行了综合分析。结果表明: 该过程强降水持续时间长、强度大、分布不均匀、致灾严重,属暖区极端强降水,500 hPa低涡和700 hPa切变线是其主要影响系统;台风外围东南暖湿气流在太行山迎风坡(新乡西部)辐合抬升使特大暴雨区上空长时间维持深厚湿层,500 hPa低涡南压所携带的弱冷平流与低层暖平流在新乡上空叠加进一步增
加了大气层结不稳定,为暴雨发生提供了水汽和位势不稳定条件;200 hPa显著分流区“抽吸作用”、太行山地形抬升和中低层低涡和切变线使新乡上空出现深厚垂直上升运动是暴雨形成的动力机制;华北中南部大范围高湿环境、深厚暖云层和湿层以及异常偏低的自由对流高度和抬升凝结高度与中等偏强的对流有效位能,是导致新乡高降水效率的有利条件;新乡强降水中心由2个孤立的β中尺度对流系统(MβCS)合并造成,其系统内部若干低质心对流单体则由太行山东侧山
前长时间维持的中尺度辐合系统产生;雷达反射率因子反映出低质心暖云降水回波特征,强回波列车效应明显,新乡特大暴雨由积云(对流)为主的积层混合降水回波长时间滞留造成。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
马月枝
张霞
胡燕平
关键词暖区暴雨;   低涡;   切变线;   中尺度对流系统;   列车效应;   地形作用     
Abstract: Using conventional meteorological observations, observational data from regional automatic weather stations, satellite images, radar data and NCEP reanalysis data, we have conducted a synergic analysis of the cause of a warm-sector excessive heavy rainfall event in Xinxiang on 9 July 2016. The results indicate that this event falls into the category of warm-sector extreme precipitation, and is long in precipitation duration, high in intensity, inhomogeneous in distribution and serious in disaster, whose main weather systems are 500 hPa low vortex and 700 hPa shear line. The southeast warm and wet airflow on the periphery of a typhoon was uplifted at the windward side (western Xinxiang) of the Taihang mountains, which made the deep moist layer over the heavy rain area maintaining for a long time. The superposition of the weak cold advection carried by the low vortex moving southwards at 500 hPa and the warm advection in the low-level over Xinxiang further increased atmospheric instability, which provided water vapor and potential instability conditions for the occurrence of heavy rainfall. Suction effect in the significant diversion area at 200 hPa, topographic uplift effect by Taihang mountains, and low vortex and shear line in the midand low-level caused the vertical upward movement over Xinxiang, which is the dynamic mechanism for heavy rainfall formation. Favorable conditions for high precipitation efficiency in Xinxiang include large-scale high humidity environment in the central and southern part of North China, thick warm cloud and humid layers, abnormally low free convection height and lifting condensation height as well as medium to strong CAPE value. The heavy precipitation center in Xinxiang was caused by the merging of two isolated β-mesoscale convective systems (MβCS) within which several low-mass center convective cells were generated by a mesoscale convergence system maintained in the east front of Taihang Mountain for a long time. The low-mass center warm cloud precipitation echo and the obvious train effect can be found in the radar basic reflectivity factor chart. It is the long-time retention of mixed convective precipitation echoes dominated by convective echoes that caused the excessive heavy rainfall event in Xinxiang.
Key wordswarm-sector heavy rainfall;   low vortex;   shear line;   mesoscale convective system;   train effect;   topographic effect   
引用本文:   
马月枝, 张霞, 胡燕平 .2017. 2016年7月9日新乡暖区特大暴雨成因分析[J]. 暴雨灾害, 36(6): 557-565.
MA Yue-Zhi, ZHANG Xia, HU Yan-Ping .2017. Cause analysis of a warm-sector excessive heavy rainfall event in Xinxiang on 9 July 2016[J]. Torrential Rain and Disasters, 36(6): 557-565.
 
没有本文参考文献
[1] 李国平, 陈佳. 西南涡及其暴雨研究新进展[J]. 暴雨灾害, 2018, 37(4): 293-302.
[2] 黄一航,陈权亮,汪正林,张娟. 1979—2016年青藏高原低涡的变化特征研究[J]. 暴雨灾害, 2018, 37(02): 97-104.
[3] 肖安,许爱华. 2016年华南地区一次大暴雨过程的空报原因分析[J]. 暴雨灾害, 2018, 37(02): 124-134.
[4] 徐明,黄治勇,高琦. 2016年5月20日广东信宜特大暴雨中尺度对流系统特征分析[J]. 暴雨灾害, 2018, 37(01): 32-40.
[5] 林毅,陈思学,吕思思. 1601号“尼伯特”台风特大暴雨的中尺度系统特征与成因分析[J]. 暴雨灾害, 2017, 36(6): 542-549.
[6] 田亚杰,王春明,崔强. 2015年5月19—20日两广地区暴雨过程数值模拟与诊断分析[J]. 暴雨灾害, 2017, 36(1): 18-25.
[7] 顾佳佳,武威. 2016年“7.9”豫北特大暴雨过程的中尺度特征分析[J]. 暴雨灾害, 2017, 36(05): 440-452.
[8] 谌伟,岳阳,刘佩廷,邓红,张蒙蒙. 鄂东北一次特大暴雨过程的两个中尺度对流系统分析[J]. 暴雨灾害, 2017, 36(04): 357-364.
[9] 段玮,肖子牛,周泓. 一次典型川滇切变线暴雨过程的诊断分析[J]. 暴雨灾害, 2017, 36(03): 200-206.
[10] 刘瑞翔1,2,丁治英1,孙凌光3,黄海波1. 夏季江淮地区中尺度对流系统的统计特征分析[J]. 暴雨灾害, 2015, 34(3): 215-.
[11] 卢焕珍,张楠,刘一玮. 天津一次局地大暴雨中尺度对流系统组织化特征与成因[J]. 暴雨灾害, 2015, 34(01): 17-.
[12] 雷蕾,孙继松,王华,丁青兰,吴庆梅. 偏东风冷空气与地形相互作用背景下北京局地强降水成因分析[J]. 暴雨灾害, 2014, 33(4): 325-332.
[13] 李侃,戴晶晶,彭义峰,叶小峰. 江西中西部地区一次暴雨过程的地形敏感性试验[J]. 暴雨灾害, 2014, 33(4): 386-391.
[14] 陈见,孙红梅,高安宁,林宗桂,黄明策. 超强台风“威马逊”与“达维”进入北部湾强度变化的对比分析[J]. 暴雨灾害, 2014, 33(4): 392-400.
[15] 吴涛, 黄小彦, 牛奔. 2012年7月12日鄂东北准静止中尺度对流系统分析[J]. 暴雨灾害, 2014, 33(3): 228-238.
版权所有 © 2011《暴雨灾害》编辑部    鄂ICP备06018784号-3
地址: 湖北省武汉市东湖高新技术开发区金融港二路《暴雨灾害》编辑部
 邮编: 430205 Tel: 027-81804935   E-mail: byzh7939@163.com
技术支持: 北京玛格泰克科技发展有限公司