[an error occurred while processing this directive]
暴雨灾害
       首页|  期刊介绍|  编 委 会|  征稿简则|  期刊订阅|  下载中心|  编辑部公告|  联系我们


暴雨灾害  2018, Vol. 37 Issue (02): 106-114    DOI: 10.3969/j.issn.1004-9045.2018.02.002
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索  |   
1970—2015年京津冀地区暖季小时降水变化特征
梁苏洁1,程善俊1,郝立生2,段丽瑶3,杨艳娟1
1. 天津市气候中心,天津 300074;2. 天津市气象服务中心,天津 300074;3. 天津市气象台,天津 300074
Analysis on the characteristics of hourly precipitation variations in Beijing-Tianjin-Hebei region during 1970-2015
LIANG Sujie1,CHENG Shanjun1,HAO Lisheng2,DUAN Liyao3,YANG Yanjuan1
1. Tianjin Climate Center, Tianjin 300074; 2. Tianjin Meteorological Service Center, Tianjin 300074;
3.
Tianjin Meteorological Observatory, Tianjin 300074
 全文: PDF (3918 KB)   HTML ( 输出: BibTeX | EndNote (RIS)      背景资料
摘要 使用京津冀地区1970—2015年暖季(5—9月) 28个国家级自动气象观测站逐日和逐时降水资料,分析了该地区暖季及其各月降水量的变化趋势与逐时降水的日变化特征。结果表明: 总降水量和极端降水在暖季前期(5—6月)呈现弱的增加趋势,而在暖季中期(7—8月)呈明显的下降趋势,后期(9月)则呈较明显的增加趋势;空间分布上,前期京津冀地区西部大部分站点降水略呈增多趋势,而东北部部分站点略呈减少趋势,中期大部分站点呈减少变化,其中西北部站点减幅较大,后期各站点基本皆呈增加趋势;暖季各月降水的日变化特征为,持续性降水(持续时间在6 h以上)午夜至凌晨多发,而短时降水(持续时间小于等于6 h)主要出现在午后至傍晚,且受气温逐月变化影响,午后短时降水在暖季前期较弱、中期增强、后期再次减弱;暖季前期午后短时降水事件次数增多,午后短时降水多因对流活动产生,有利于极端小时降水强度增大;暖季中期夜间至凌晨的累积降水量在1997年以来明显减少,而午后短时降水事件的降水量减少主要是降水事件次数减少造成的;2000年代初以来,暖季后期降水明显增多,夜间至凌晨持续性降水事件强度和次数都在增加,其中降水强度引起的雨量增量对降水量增加贡献更大。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
梁苏洁
程善俊
郝立生
段丽瑶
杨艳娟
关键词降水;   日变化;   暖季;   京津冀     
Abstract: Using the daily and hourly precipitation data at 28 national automatic weather stations over Beijing-Tianjin-Hebei region in warm season between May and September during 1970-2015, we have analyzed the variation trend and the daily variation characteristics of precipitation. The results show that the trend of total precipitation amount and extreme precipitation at most of the stations have increased weakly in prophase (May and June), decreased evidently in metaphase (July and August), and increased evidently in telophase (September). Also, it is found that most of the stations locating in west part of Beijing-Tianjin-Hebei region show increasing trends of total precipitation amount and extreme precipitation, while a few stations locating in northeast part have decreasing trends in prophase. And most of the stations have decreasing trends in metaphase, especially those locating in northwest part. However, almost all of the stations have increasing trends in telophase. The following are the main characteristics of the daily variations of monthly precipitation in warm season. The long-duration rainfall events that last longer than 6 hours occur frequently in the late night to early morning, while the short duration rainfall events of 1-6 hours in duration mainly occurs in the afternoon to evening and is affected by monthly temperature changes. Short duration rainfall events in afternoon weaken in prophase, increase in metaphase and weaken again in telophase. In prophase of warm season, short duration rainfall events in afternoon, that is more related to convective precipitation, increases in frequency, which is advantageous to strengthening of hourly extreme precipitation. In metaphase of warm season, nocturnal accumulated precipitation has decreased significantly since 1997. The decrease of precipitation amount of short duration rainfall events in afternoon is mainly caused by the decrease of precipitation events. However, precipitation amount in telophase of warm season has increased significantly since early 2000s. The intensity and frequency of long-duration precipitation events increased at night to early morning, in which rainfall increment due to precipitation intensity contributes more to precipitation increase.
Key wordsprecipitation;   daily variation;   warm season;   Beijing-Tianjin-Hebei region   
引用本文:   
梁苏洁, 程善俊, 郝立生,等 .2018. 1970—2015年京津冀地区暖季小时降水变化特征[J]. 暴雨灾害, 37(02): 106-114.
LIANG Su-Jie, CHENG Shan-Jun, HAO Li-Sheng, et al .2018. Analysis on the characteristics of hourly precipitation variations in Beijing-Tianjin-Hebei region during 1970-2015[J]. Torrential Rain and Disasters, 37(02): 106-114.
 
没有本文参考文献
[1] 申莉莉, 张迎新, 隆璘雪, 孙云, 康增妹. 1981-2016年京津冀地区极端降水特征研究[J]. 暴雨灾害, 2018, 37(5): 428-434.
[2] 王新伟,平凡,姬兴杰,李梦夏,刘晓迎. 近40 a河南省夏季降水变化特征分析[J]. 暴雨灾害, 2018, 37(3): 219-229.
[3] 章毅之,吴琼,胡菊芳,赵冠男,曹毅. 江西省小时降水特征分析[J]. 暴雨灾害, 2018, 37(3): 274-280.
[4] 谢泽明,周玉淑,杨莲梅. 新疆降水研究进展综述[J]. 暴雨灾害, 2018, 37(3): 204-212.
[5] 王彬雁,赵琳娜,许晖,刘莹. 四川雨季小时降水的概率分布特征及其降水分区[J]. 暴雨灾害, 2018, 37(02): 115-123.
[6] 胡丹晖,王苗,高正旭,秦鹏程,任永建. 基于气候弹性模型的丹江口水库水源区径流模拟及预测[J]. 暴雨灾害, 2018, 37(02): 174-180.
[7] 张家国,王珏,吴涛,周金莲,钟敏,王珊珊,黄小彦,李双君,韩芳蓉,王孝慈. 长江中游地区极端降水主要天气系统类型分析[J]. 暴雨灾害, 2018, 37(01): 14-23.
[8] 唐永兰,于晓晶,徐桂荣,李颖. 近54 a湖北极端降水的变化特征及其与城市化的关系研究[J]. 暴雨灾害, 2018, 37(01): 73-82.
[9] 孙继松. 短时强降水和暴雨的区别与联系[J]. 暴雨灾害, 2017, 36(6): 498-506.
[10] 田付友,郑永光,张涛,曹艳察,盛杰. 我国中东部不同级别短时强降水天气的环境物理量分布特征[J]. 暴雨灾害, 2017, 36(6): 518-526.
[11] 傅云飞,冼桃. 副热带高压中心区域内云和降水气候特征研究回顾与展望[J]. 暴雨灾害, 2017, 36(6): 489-497.
[12] 李明,袁凯,翟红楠. 一种面向对象的强降水精细化预报质量检验方法及应用[J]. 暴雨灾害, 2017, 36(1): 81-85.
[13] 支树林,包慧濛,张弛. 一次夜间发展起来的大暴雨的中尺度对流条件及特征分析[J]. 暴雨灾害, 2017, 36(1): 42-52.
[14] 柳春,王东勇, 郑淋淋. 近30 a安徽省汛期降水日变化特征分析[J]. 暴雨灾害, 2017, 36(1): 53-59.
[15] 魏葳,蒋丽,陈晓伟,蔡磊,唐娟. 2015年皖江最强梅雨锋短时强降水过程成因分析[J]. 暴雨灾害, 2017, 36(1): 66-74.
版权所有 © 2011《暴雨灾害》编辑部    鄂ICP备06018784号-3
地址: 湖北省武汉市东湖高新技术开发区金融港二路《暴雨灾害》编辑部
 邮编: 430205 Tel: 027-81804935   E-mail: byzh7939@163.com
技术支持: 北京玛格泰克科技发展有限公司