[an error occurred while processing this directive]
暴雨灾害
       首页|  期刊介绍|  编 委 会|  征稿简则|  期刊订阅|  下载中心|  编辑部公告|  联系我们


暴雨灾害  2018, Vol. 37 Issue (02): 135-148    DOI: 10.3969/j.issn.1004-9045.2018.02.005
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索  |   
莫兰蒂台风(2016)登陆前后精细结构及其引发福建特大暴雨的模拟研究
赵玉春1,2,王叶红1,2,陈健康3,黄惠镕3
1. 海峡气象开放实验室,厦门 361012;2. 厦门市气象局,厦门 361012;3. 厦门市气象台,厦门 361012
Numerical investigation on detailed structure of Typhoon“Meranti”(2016) and extreme heavy rainfall event induced by it before and after landfall in Fujian
ZHAO Yuchun1,2,WANG Yehong1,2,CHEN Jiankang3,HUANG Huirong3
1. Laboratory of Straits Meteorology, Xiamen 3610122. Xiamen Meteorological Bureau, Xiamen 361012;
3.
Xiamen Meteorological Observatory, Xiamen 361012
 全文: PDF (22632 KB)   HTML ( 输出: BibTeX | EndNote (RIS)      背景资料
摘要 利用福建省地面加密自动站观测资料、NCAR/NCEP再分析资料(0.5°×0.5°)与WRF中尺度数值模式的模拟结果,对2016年第14号台风“莫兰蒂”引发的福建特大暴雨过程的地面降水特征以及台风登陆前后其流场、温湿场、能量场与动力、热力等三维精细结构特征进行了分析,并初步探讨了台风登陆后螺旋雨带强降水主要位于台风东北侧的原因。结果发现: (1) 台风登陆前,台风底层到中高层为暖心、湿心和正涡度柱结构,中高层假相当位温(θse)为漏斗状结构,台风边界层存在明显的入流,台风螺旋雨带的非对称性相对较弱,仅在有多重气流结构的台风西南侧其螺旋雨带强度相对较弱且范围相对较小。(2) 台风登陆后,台风的暖心、湿心结构特征很快消失,正涡度柱水平范围收缩,台风中高层θse漏斗状结构触地,台风西南侧转为较深厚的出流,西北侧低层入流减弱,而台风东侧和东北侧维持深厚入流,台风螺旋雨带主要位于台风东北侧。(3) 台风登陆后螺旋雨带强降水主要位于台风的东北侧,这与台风环流内0—3波形成的“偏心”结构有关。(4) 厦门至泉州一带大暴雨由台风内核雨带造成,福州至宁德一带大暴雨由台风螺旋雨带造成;台风内核雨带与螺旋雨带强降水形成的环境条件和物理机制存在一定差异。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
作者相关文章
赵玉春
王叶红
陈健康
黄惠镕
关键词登陆台风;   特大暴雨;   精细结构;   数值模拟     
Abstract: Based on the intensive observations at automatic weather stations over Fujian province, NCEP/NCAR reanalysis with 0.5°×0.5° resolution and simulations from WRF mesoscale numerical model, we have performed an analysis of the features of surface rainfall in the extreme heavy rainfall event induced by Typhoon“Meranti”(1614) in Fujian and the detailed three dimensional structures of airflow, temperature and moisture, energy, dynamic and thermodynamic fields, and conducted a preliminary investigation of the reason why the extreme heavy rainfall of the typhoon spiral rain band locates in the northeast quadrant after the typhoon landfall. The main results are as follows. (1) Before typhoon’s landing, it showed warm core, moist core and positive vorticity column features in the lower to mid-high levels of the typhoon circulation and the funnel-shaped structure of pseudo-equivalent potential temperature (θse) in the mid-high level. The radial inflow obviously persists in the boundary level. The asymmetry of typhoon spiral rain band is weak. Only in the southwest quadrant of the typhoon, the intensity and area of spiral rain band are not as strong and wide as in other quadrants. (2) After typhoon’s landing, its warm and moist core disappears fast and the horizontal range of positive vorticity column decreases gradually. The funnel-shaped structure of θse in the mid- and  upper-level  touches down to the ground. The deep radial outflow begins to prevail in the southwest quadrant and the radial inflow start to weaken in the northwest quadrant. However, the deep radial inflow persists in the east and northeast quadrants, which leads to a spiral rain band mainly locating in the northeast quadrant. (3) The severe precipitation in the spiral rain band mainly locates in the northeast quadrant after typhoon’s landing, which is related to the decentration of tangential waves with wave numbers 0-3 in the typhoon circulation. (4) The extreme heavy rain in Xiamen and Quanzhou is mainly caused by typhoon inner core rain band, and that in Ningde and Fuzhou predominantly results from typhoon spiral rain band. It is also found that the environments and physical mechanisms are different for the formation of extreme heavy rainfall in the typhoon inner core and spiral rain band.
Key wordslanding typhoon;   extreme heavy rain;   detailed structure;   numerical simulation   
引用本文:   
赵玉春, 王叶红, 陈健康,等 .2018. 莫兰蒂台风(2016)登陆前后精细结构及其引发福建特大暴雨的模拟研究[J]. 暴雨灾害, 37(02): 135-148.
ZHAO Yu-Chun, WANG Ye-Hong, CHEN Jian-Kang, et al .2018. Numerical investigation on detailed structure of Typhoon“Meranti”(2016) and extreme heavy rainfall event induced by it before and after landfall in Fujian[J]. Torrential Rain and Disasters, 37(02): 135-148.
 
没有本文参考文献
[1] 林春泽, 王宁涛, 王清, 谭建民, 连志鹏. 降雨型滑坡地质灾害预警预报研究进展[J]. 暴雨灾害, 2018, 37(5): 393-400.
[2] 陈宣淼,余贞寿,叶子祥. 浙南闽北登陆台风发生区域性暴雨增幅的环境场特征分析[J]. 暴雨灾害, 2018, 37(3): 246-256.
[3] 陈德花,潘宁,张玲,张伟,荀爱萍. 海风锋及低压环流对闽东一次暴雨过程的影响分析[J]. 暴雨灾害, 2018, 37(02): 149-157.
[4] 徐明,黄治勇,高琦. 2016年5月20日广东信宜特大暴雨中尺度对流系统特征分析[J]. 暴雨灾害, 2018, 37(01): 32-40.
[5] 吴珊珊,邹海波,单九生. 不同积云和微物理方案对“麦德姆”台风登陆后路径的影响[J]. 暴雨灾害, 2018, 37(01): 41-47.
[6] 洪国平,万君,柳晶辉,叶丽梅,向华. 武汉城区短历时暴雨内涝数值模拟研究[J]. 暴雨灾害, 2018, 37(01): 83-89.
[7] 赵大军,姚秀萍. 北京“7·21”特大暴雨过程中的干侵入指数特征研究[J]. 暴雨灾害, 2017, 36(6): 527-534.
[8] 林毅,陈思学,吕思思. 1601号“尼伯特”台风特大暴雨的中尺度系统特征与成因分析[J]. 暴雨灾害, 2017, 36(6): 542-549.
[9] 杨薇,冯文,李勋. 微物理过程和积云参数化方案对海南岛秋季暴雨模拟的影响[J]. 暴雨灾害, 2017, 36(1): 8-17.
[10] 顾佳佳,武威. 2016年“7.9”豫北特大暴雨过程的中尺度特征分析[J]. 暴雨灾害, 2017, 36(05): 440-452.
[11] 郑飒飒,刘建西,刘晓璐,马超. 西昌一次降雹过程的数值模拟研究[J]. 暴雨灾害, 2017, 36(05): 475-481.
[12] 孟晓文,隆霄,周国兵,温晓培,谢恩泽,张建宁. 同化常规资料对重庆地区一次大暴雨过程的数值模拟研究[J]. 暴雨灾害, 2017, 36(04): 309-318.
[13] 闵爱荣,廖移山,邓雯. 2008—2013年我国暴雨分布情况及变化趋势分析[J]. 暴雨灾害, 2016, 35(6): 576-584.
[14] 徐同,王晓峰,张蕾,杨玉华,李佳. 加密探空资料在华东区域业务模式中的应用试验[J]. 暴雨灾害, 2016, 35(4): 306-.
[15] 岳彩军1,郑世林2,吴蓁2,李佳3,王平3,鲁小琴3. 湿Q矢量释用技术在登陆华东台风定量降水预报(QPF)中的应用研究[J]. 暴雨灾害, 2016, 35(1): 17-.
版权所有 © 2011《暴雨灾害》编辑部    鄂ICP备06018784号-3
地址: 湖北省武汉市东湖高新技术开发区金融港二路《暴雨灾害》编辑部
 邮编: 430205 Tel: 027-81804935   E-mail: byzh7939@163.com
技术支持: 北京玛格泰克科技发展有限公司