[an error occurred while processing this directive]
暴雨灾害
       首页|  期刊介绍|  编 委 会|  征稿简则|  期刊订阅|  下载中心|  编辑部公告|  联系我们


暴雨灾害  2018, Vol. 37 Issue (02): 149-157    DOI: 10.3969/j.issn.1004-9045.2018.02.006
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索  |   
海风锋及低压环流对闽东一次暴雨过程的影响分析
陈德花1,2,潘宁1,3,张玲1,2,张伟1,2,荀爱萍1,2
1. 海峡气象开放实验室,厦门 361012;2. 厦门市气象台,厦门 361012;3. 福建省气象台,福州 350001
Analysis of a heavy rainfall event triggered by sea breeze front and cyclonic circulation in the eastern coast of Fujian
CHEN Dehua1,2,PAN Ning1,3,ZHANG Ling1,2,ZHANG Wei1,2,XUN Aiping1,2
1. Laboratory of Straits meteorology, Xiamen 3610122. Xiamen Meteorological Observatory, Xiamen 361012;
3.
Fujian Meteorological Observatory, Fuzhou 350001
 全文: PDF (16318 KB)   HTML ( 输出: BibTeX | EndNote (RIS)      背景资料
摘要 利用常规气象观测资料、NCEP再分析资料与WRF数值模拟资料,以2014年8月11日闽东沿海一次大暴雨天气过程为例,分析了该过程中海风锋、低压环流的形成、移动及其在暴雨区上空的结构演变与热力、动力特征。结果表明:(1) 该过程午后强降水的主要影响系统是海风锋,夜间强降水的主要影响系统是低压环流。(2) 数值模式较好地模拟出海风锋的生消以及低压环流的形成和移动。海风能深入到内陆70~90 km,并与山谷风形成海风锋。在海风锋的前端是东南风和东北或西北风交汇的辐合带,对应其南侧海风气旋性曲率最大处,降水越强。(3) 海风锋在向内陆推进的过程中呈现出湿度增大、湿层增厚、气温下降的特征;海风最强时刻对应低空辐合最强、地面降水最强;海陆气压差日变化与海陆温差呈反位相分布。(4) 闽东沿海午后强降水主要由海风锋造成;夜间,再次增强的偏南气流与随冷空气南下的偏北气流汇合,激发气旋性涡度增大,使得低压环流强烈发展,导致闽东沿海夜间大暴雨。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
作者相关文章
陈德花
潘宁
张玲
张伟
荀爱萍
关键词暴雨;   海风锋;   低压环流;   数值模拟;   闽东沿海     
Abstract: Using datasets of conventional observations, NCEP/NCAR reanalysis and numerical simulations by WRF model, we have investigated the formation and motion of sea breeze front (SBF) and cyclonic circulation, as well as their thermodynamic and dynamic structure characteristics, for a heavy rainfall event occurred in the eastern coast of Fujian on 11 August 2014. The results indicate that (1) the main weather systems leading to the severe rainfall is SBF in afternoon and cyclonic circulation in nocturnal. (2) The generation and dissipation of SBF and the formation and motion of cyclonic circulation are reasonably simulated by the numerical model. Sea breeze invades interior territory for 70-90 km and encounters valley wind triggering SBF. A convergence zone is in front edge of the SBF caused by southeast wind and northeast wind or northwest wind, corresponding to the maximum cyclonic curvature of sea breeze in the south side convergence zone where rainfall intensity is the strongest. (3) The characteristics of increasing humidity, thickening wet layer and decreasing temperature are presented in the process of sea breeze advancing inland. When the sea breeze reaches the strongest, both low-level convergence and ground-level precipitation reach the strongest, too. Diurnal variations of pressure difference and temperature difference are reversed phase distribution between sea and land. (4) Severe rainfall in the afternoon in the eastern coast of Fujian is mainly caused by SBF. At night, the converge of the southerly air flow increased further and the northerly air flow with the cold air moving southwards triggers the increase of cyclonic vorticity, which makes the low-pressure circulation developed vigorously, and eventually resulting in extremely heavy rainfall in nocturnal in east coast of Fujian.
Key wordsheavy rainfall;   sea breeze front;   cyclonic circulation;   numerical simulation;   eastern coast of Fujian   
引用本文:   
陈德花, 潘宁, 张玲,等 .2018. 海风锋及低压环流对闽东一次暴雨过程的影响分析[J]. 暴雨灾害, 37(02): 149-157.
CHEN De-Hua, PAN Ning, ZHANG Ling, et al .2018. Analysis of a heavy rainfall event triggered by sea breeze front and cyclonic circulation in the eastern coast of Fujian[J]. Torrential Rain and Disasters, 37(02): 149-157.
 
没有本文参考文献
[1] 徐双柱,陈静静,王青霞. 南岳山、庐山高山站风场对长江流域梅雨锋暴雨的指示作用[J]. 暴雨灾害, 2018, 37(3): 213-218.
[2] 张楠,何群英,刘彬贤,吴振玲,刘一玮,卢焕珍. 非典型环流形势下天津一次局地暴雨过程中尺度特征分析[J]. 暴雨灾害, 2018, 37(3): 230-237.
[3] 肖安,许爱华. 2016年华南地区一次大暴雨过程的空报原因分析[J]. 暴雨灾害, 2018, 37(02): 124-134.
[4] 赵玉春,王叶红,陈健康,黄惠镕. 莫兰蒂台风(2016)登陆前后精细结构及其引发福建特大暴雨的模拟研究[J]. 暴雨灾害, 2018, 37(02): 135-148.
[5] 徐明,黄治勇,高琦. 2016年5月20日广东信宜特大暴雨中尺度对流系统特征分析[J]. 暴雨灾害, 2018, 37(01): 32-40.
[6] 於琍,徐影,张永香. 近25 a中国暴雨及其引发的暴雨洪涝灾害影响的时空变化特征[J]. 暴雨灾害, 2018, 37(01): 67-72.
[7] 吴珊珊,邹海波,单九生. 不同积云和微物理方案对“麦德姆”台风登陆后路径的影响[J]. 暴雨灾害, 2018, 37(01): 41-47.
[8] 洪国平,万君,柳晶辉,叶丽梅,向华. 武汉城区短历时暴雨内涝数值模拟研究[J]. 暴雨灾害, 2018, 37(01): 83-89.
[9] 王智,范旭亮,于甜甜. 一次长三角地区暴雨过程的集合预报应用与分析[J]. 暴雨灾害, 2018, 37(01): 8-13.
[10] 马月枝,张霞,胡燕平. 2016年7月9日新乡暖区特大暴雨成因分析[J]. 暴雨灾害, 2017, 36(6): 557-565.
[11] 赵大军,姚秀萍. 北京“7·21”特大暴雨过程中的干侵入指数特征研究[J]. 暴雨灾害, 2017, 36(6): 527-534.
[12] 林毅,陈思学,吕思思. 1601号“尼伯特”台风特大暴雨的中尺度系统特征与成因分析[J]. 暴雨灾害, 2017, 36(6): 542-549.
[13] 孙继松. 短时强降水和暴雨的区别与联系[J]. 暴雨灾害, 2017, 36(6): 498-506.
[14] 杨薇,冯文,李勋. 微物理过程和积云参数化方案对海南岛秋季暴雨模拟的影响[J]. 暴雨灾害, 2017, 36(1): 8-17.
[15] 田亚杰,王春明,崔强. 2015年5月19—20日两广地区暴雨过程数值模拟与诊断分析[J]. 暴雨灾害, 2017, 36(1): 18-25.
版权所有 © 2011《暴雨灾害》编辑部    鄂ICP备06018784号-3
地址: 湖北省武汉市东湖高新技术开发区金融港二路《暴雨灾害》编辑部
 邮编: 430205 Tel: 027-81804935   E-mail: byzh7939@163.com
技术支持: 北京玛格泰克科技发展有限公司