[an error occurred while processing this directive]
暴雨灾害
       首页|  期刊介绍|  编 委 会|  征稿简则|  期刊订阅|  下载中心|  编辑部公告|  联系我们


暴雨灾害  2018, Vol. 37 Issue (02): 164-173    DOI: 10.3969/j.issn.1004-9045.2018.02.008
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索  |   
川北飑线成熟阶段灾害性大风成因个例分析
竹利1,2,3,陈朝平2,陈茂强4,廖文超3
1. 南京大学大气科学学院/中尺度灾害性天气教育部重点实验室,南京 210093;2. 四川省气象台,成都 610072;
3. 四川省南充市气象局,南充 637000;4. 四川省内江市气象局,内江 641000
Cause analysis of a disastrous gale event induced by squall line in the mature stage in northern Sichuan
ZHU Li1,2,3,CHEN Chaoping2,CHEN Maoqiang4,LIAO Wenchao3
1. Key Laboratory of Mesoscale Severe Weather / Ministry of Education, School of Atmospheric Sciences, Nanjing University, Nanjing 210093
2. Sichuan Meteorological Observatory, Chengdu 61072; 3. Nanchong Meteorological Office of Sichuan Province, Nanchong
637000;
4.
Neijiang Meteorological Office of Sichuan Province, Neijiang 641000
 全文: PDF (11315 KB)   HTML ( 输出: BibTeX | EndNote (RIS)      背景资料
摘要 采用加密探空资料、Himawari-8气象卫星云图、雷达资料及地面加密观测资料,对2016年6月四川北部一次造成大风灾害的飑线过程进行综合观测分析,着重分析该飑线成熟阶段地面灾害性大风的落区特征;结合中尺度数值模式模拟的高分辨率产品数据,分析此次飑线大风落区与飑线系统后部入流急流的关系,并深入探讨了飑线系统后部入流急流的形成、维持机制。结果表明: 该飑线成熟阶段,地面大风中心位于后部入流急流的中心轴顶端的强对流云团附近区域;成熟飑线前侧存在一地面中尺度辐合线,该辐合线对飑线演变具有一定的指示意义,指示时间约提前1 h;由于成熟飑线系统自身的扰动温度分布不均衡,在对流单体后边界产生的水平涡度对飑线中层后部入流的加速作用下,形成了后部入流急流;在飑线的中层,后部入流急流与水平扰动温度梯度之间存在正反馈效应,它是成熟飑线产生地面大风的一种重要物理机制,也是弓形回波形成的物理机制;飑线地面大风极值的主要预报着眼点为环境对流有效位能(CAPE)和中高层干冷平流强度;中低层水汽条件对飑线维持发展起重要作用。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
竹利
陈朝平
陈茂强
廖文超
关键词飑线;   地面大风;   后部入流急流;   中尺度涡旋;   预报着眼点     
Abstract: Based on intensive radiosonde data, visible cloud images from Himawari-8 satellite, radar data and observations from regional automatic weather stations, we have made the comprehensive analysis of a squall line event in northern Sichuan on 4 June 2016, with focus on the falling area characteristics of ground-disastrous gale induced by squall line in the mature stage. Then combining with high resolution data simulated by WRF, we have analyzed the relationship between the gale area and rear inflow jet with the squall line system, and explored the formation and maintenance mechanism of rear inflow jet. The results show that the gale center in the ground is located in the vicinity of the strong convective cloud clusters at the top end of the central axis of the rear inflow jet at the mature stage of the squall line. A surface mesoscale convergence line is observed at the front side of matured squall line, and has a high indicative significance for the development of squall line, with indicative time being ahead about one hour. The rear inflow jet is formed under the accelerated effect of the horizontal vorticity produced in the rear boundary of convective cell on the rear inflow of squall line in the middle level due to the unbalanced temperature distribution of the squall system. A positive feedback effect between the rear inflow jet and the horizontal perturbation temperature gradient is an important physical mechanism for the formation of the gale at the mature stage and bow-shaped echo. Convective Available Potential Energy and dry and cold advection intensity in the mid-and upper-level are main factors for forecasting surface maximum gale induced by squall line. Water vapor conditions in the mid- and low-level play major roles for the maintenance and development of squall line.
Key wordssquall line;   surface gale;   rear inflow jet;   mesoscale vortex;   forecasting focus   
引用本文:   
竹利, 陈朝平, 陈茂强,等 .2018. 川北飑线成熟阶段灾害性大风成因个例分析[J]. 暴雨灾害, 37(02): 164-173.
ZHU Li, CHEN Chao-Ping, CHEN Mao-Qiang, et al .2018. Cause analysis of a disastrous gale event induced by squall line in the mature stage in northern Sichuan[J]. Torrential Rain and Disasters, 37(02): 164-173.
 
没有本文参考文献
[1] 杨芳园,沈茜,周稀,邹灵宇,段燕楠,潘娅婷,李晓鹏. 云南省一次飑线大风天气过程的中尺度特征分析[J]. 暴雨灾害, 2018, 37(01): 48-56.
[2] 周昆1,陈兴超2,王东勇1,徐焕3. 2014年淮河流域一次飑线过程的结构及环境分析[J]. 暴雨灾害, 2016, 35(1): 69-.
[3] 东高红,韩素芹,刘一玮,史得道. 一次大暴雨过程中尺度涡旋系统特征分析[J]. 暴雨灾害, 2013, 32(2): 97-104.
[4] 叶成志,唐明晖,陈红专,田莹. 2013年湖南首场致灾性强对流天气过程成因分析[J]. 暴雨灾害, 2013, 32(1): 1-10.
[5] 张一平, 牛淑贞, 席世平, 梁俊平, 宋培玲, 周红俊. 东北低涡槽后型河南强对流过程的天气学特征分析[J]. 暴雨灾害, 2011, 30(3): 193-201.
[6] 李姝霞;张宇星;张怡;王其英;姜东东;王长海;. 豫东地区一次强飑线天气过程的综合分析[J]. 暴雨灾害, 2011, 30(01): 59-65.
[7] 吴涛;张火平;吴翠红;. 一次初夏强对流天气的弓形回波特征分析[J]. 暴雨灾害, 2009, 28(04): 20-26.
[8] 刘志勇;任玮颖;王莉萍;. 2008年6月1日鄂西北飑线天气过程综合分析[J]. 暴雨灾害, 2009, 28(03): 87-92.
[9] 陈红专;曾志明;杨素珍;宋明;. 湘黔边境一次高空槽前型飑线天气过程的成因分析[J]. 暴雨灾害, 2008, 27(03): 47-67.
[10] 陈业国;沈桐立;唐文;. 2007年华南一次强飑线过程的雷达回波分析及数值模拟[J]. 暴雨灾害, 2008, 27(02): 41-46.
[11] 赵玉春;王仁乔;. 灾害性天气总结中存在的问题和关键要点分析[J]. 暴雨灾害, 2008, 27(01): 89-95.
[12] 黄艳芳;. 2004年初春武汉机场临近的两次强雷暴天气过程分析[J]. 暴雨灾害, 2007, 26(01): 75-79.
[13] 孙士型,陈少平,于大峰,汪应琼,仇苏宁. 一次飑线过程的卫星云图和雷达回波特征[J]. 暴雨灾害, 2004, 23(01): 14-16.
版权所有 © 2011《暴雨灾害》编辑部    鄂ICP备06018784号-3
地址: 湖北省武汉市东湖高新技术开发区金融港二路《暴雨灾害》编辑部
 邮编: 430205 Tel: 027-81804935   E-mail: byzh7939@163.com
技术支持: 北京玛格泰克科技发展有限公司