[an error occurred while processing this directive]
暴雨灾害
       首页|  期刊介绍|  编 委 会|  征稿简则|  期刊订阅|  下载中心|  编辑部公告|  联系我们


暴雨灾害  2018, Vol. 37 Issue (5): 435-444    DOI: 10.3969/j.issn.1004-9045.2018.05.006
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索  |   
伊犁河谷夏季两次极端暴雨过程的动力机制与水汽输送特征
张云惠1, 于碧馨1, 王智楷2, 贾丽红1
1. 新疆气象台, 乌鲁木齐 830002;
2. 四川省中江县气象局, 中江 618100
Dynamic mechanism and water vapor transportation characteristics of two extreme rainstorm events in Ili River valley in summer of 2016
ZHANG Yunhui1, YU Bixin1, WANG Zhikai2, JIA Lihong1
1. Xinjiang Meteorological Observatory, Urumqi 830002;
2. Zhongjiang Meteorological station of Sichuan Province, Zhongjiang 618000
 全文: PDF (8719 KB)   HTML ( 输出: BibTeX | EndNote (RIS)      背景资料
摘要 新疆伊犁河谷2016年6月16-17日和7月31日-8月1日先后发生两次极端暴雨过程(分别简称"0617"过程和"0801 "过程),其日降水量均连续刷新历史记录,前者雨强大、时段分散,后者面雨量大、强降水持续时间长。本文利用常规观测资料、自动站逐时雨量资料与ECMWF 0.25°×0.25°再分析资料,对这两次过程进行了对比分析,重点探讨了两次过程动力机制与水汽输送特征的异同点,其主要结果如下。相同点:两次过程均发生在500 hPa两脊一槽环流背景下,中亚低槽南伸至40°N附近、伊犁河谷低空偏西急流建立与维持以及地形影响下的风切变、风速辐合与强迫抬升等相互配合是极端暴雨形成的有利环境条件;伊犁河谷低空偏西急流与中高层西南气流叠加使迎风坡维持强的垂直上升运动是暴雨产生的动力机制;暴雨的水汽源地主要在咸海至巴尔喀什湖南部40°N附近中亚地区偏西路径携带的水汽,其次是中高层偏南气流的水汽输送。不同点" :0617"过程,热力条件较好,局地对流强,强降水时间短,小时雨量大,暴雨区分散,灾害重,而"0801"过程,500 hPa中亚低槽前偏南气流、600 hPa风切变明显偏强,尤其是中低层青藏高原东侧-河西走廊-南疆盆地偏东急流的维持,使得动力及水汽辐合机制异常偏强,异常水汽接力输送及强的动力辐合是该过程面雨量突破极值的主要原因;暴雨区水汽收支分析表明,"0617"过程水汽输入主要来自西边界,其次是北边界,而"0801"过程水汽输入主要来自南边界,其次是西、东边界,且降水随西、东边界中层水汽输入增强而明显增大。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
作者相关文章
张云惠
于碧馨
王智楷
贾丽红
关键词暴雨   动力机制   水汽输送   水汽收支   伊犁河谷     
Abstract: Based on routine upper-air and surface observations, hourly rainfall from automatic weather stations (AWSs) and ECMWF reanalysis data with 0.25°×0.25° resolution, we have conducted a comparative analysis of the two extreme rainstorm events (hereinafter referred to as "0617" event and "0801" event, respectively) occurred in Ili River valley from June 16 to 17 and from July 31 to August 1 in 2016, emphasizing their similarities and differences in dynamic mechanism and water vapor transportation characteristics. Main results are as follows. The similarities show that (1) both rainstorm events occurred under the background with two troughs and one ridge pattern at 500 hPa. (2) The southward moving by 40°N of Central Asia low trough, establishment and maintenance of the westerly low-level jet stream over Ili River valley, and the wind shear, wind velocity convergence and forcing uplifting under topographic effect are observed. All these factors provide favorable environment conditions for the formation of extreme rainstorm. (3) The combined effect of the low-level westerly jet and the southwest air flow in the mid-and upper-level causes the maintenance of ascending movement in the windward slope, which is the dynamic mechanism of the two rainstorm events. (4) The water vapor for rainstorm comes mostly from the Central Asia nearby 40°N between Aral Sea and the south of Balkhash Lake. The differences show that (1) "0617" event is characterized by a more favorable thermodynamic condition, including strong local convection, short severe rainfall duration, large hourly rainfall, scattered rainstorm areas and serious disaster. The primary water input for this event is from the west boundary, and the secondary source is from north one. (2) In "0801" event, the southerly air flow in front of the trough at 500 hPa, and the convergence and shear of wind at 600 hPa are distinctly stronger. Especially, the easterly jet maintains over East Tibetan-Qinghai Plateau, Hexi Corridor and South Xinjiang in the mid-and low-level, which causes the dynamic and the water vapor convergence enhancement significantly. The primary water input is from the south boundary, and the secondary source is from the west and east. Precipitation increases obviously with the enhancement of the water input from the west and east boundary in the middle level. Unusual transport and strong convergence of water vapor result in the maximum area rainfall value which broke historical records during this event.
Key wordsextreme rainstorm   dynamic mechanism   water vapor transportation   water vapor budget   Ili River valley   
收稿日期: 2018-02-23;
基金资助:

中央级公益性科研院所基本科研业务项目(IDM2016001);中国气象局预报员专项(CAMYBY2017-084)

通讯作者: 贾丽红,主要从事数值预报模式释用研究。E-mail:jlhpxs@sina.com   
作者简介: 张云惠,主要从事新疆暴雨(雪)天气及中亚低涡研究。E-mail:715208285@qq.com
引用本文:   
张云惠, 于碧馨, 王智楷,等 .2018. 伊犁河谷夏季两次极端暴雨过程的动力机制与水汽输送特征[J]. 暴雨灾害, 37(5): 435-444.
ZHANG Yun-Hui, YU Bi-Xin, WANG Zhi-Kai, et al .2018. Dynamic mechanism and water vapor transportation characteristics of two extreme rainstorm events in Ili River valley in summer of 2016[J]. Torrential Rain and Disasters, 37(5): 435-444.
 
没有本文参考文献
[1] 林佩贤, 田刚, 李超. 湖北省区域性暴雨雨团识别及特征分析[J]. 暴雨灾害, 2021, 40(5): 505-512.
[2] 苏爱芳, 吕晓娜, 崔丽曼, 李周, 席乐, 栗晗. 郑州“7.20”极端暴雨天气的基本观测分析[J]. 暴雨灾害, 2021, 40(5): 445-454.
[3] 杨晓亮, 杨敏, 段宇辉, 朱刚, 孙云. 京津冀一次暖区大暴雨的成因分析[J]. 暴雨灾害, 2021, 40(5): 455-465.
[4] 毛紫怡, 李国平, 许霖. 湖南一次持续性暴雨过程的水汽输送与收支特征[J]. 暴雨灾害, 2021, 40(5): 513-522.
[5] 高大伟, 吴利红, 马浩, 姚益平, 方贺, 朱占云, 魏爽. 基于CMPAS的临海市超强台风洪涝淹没个例模拟及检验[J]. 暴雨灾害, 2021, 40(5): 549-557.
[6] 黄治勇, 王婧羽, 周文. 2020年7月4—8日长江中游极端暴雨特征分析[J]. 暴雨灾害, 2021, 40(4): 333-341.
[7] 王丽芳, 漆梁波, 周伟, 王璐璐, 王轲. 频率匹配技术在暴雨预报中的应用及改进分析[J]. 暴雨灾害, 2021, 40(4): 352-361.
[8] 刘慧敏, 马晓华, 梁生俊, 康磊, 蒋伊蓉, 娄盼星, 艾锐. 2017年7月25日陕北局地特大暴雨过程的β中尺度特征分析[J]. 暴雨灾害, 2021, 40(4): 374-382.
[9] 张娇, 王东勇, 郑淋淋, 姚晨, 胡玥琦, 朱红芳, 徐怡. ECMWF模式强降水预报偏差订正方法研究及应用[J]. 暴雨灾害, 2021, 40(4): 430-436.
[10] 史天如, 周月华, 叶丽梅, 李兰. 2012年8月6日谷城倒塔事故与暴雨洪涝影响调查分析[J]. 暴雨灾害, 2021, 40(2): 182-189.
[11] 王银平, 崔春光, 苏爱芳, 唐永兰. 暴雨天气个例分析论文写作中的若干问题讨论[J]. 暴雨灾害, 2021, 40(2): 111-124.
[12] 聂云, 周继先, 杨帆, 杨群, 杜小玲. 梵净山东南侧夏季暖区暴雨中尺度系统演变与环境场特征个例分析[J]. 暴雨灾害, 2021, 40(2): 125-135.
[13] 黄惠镕, 赵玉春, 荀爱萍, 陈健康, 张伟. 2013年相似路径台风“苏力”与“潭美”造成福建暴雨落区差异的成因[J]. 暴雨灾害, 2021, 40(2): 136-146.
[14] 陶玮, 郭婷, 吴瑞姣, 周昆, 邱学兴. 安徽省暴雨灾害预警等级的划分及其应用[J]. 暴雨灾害, 2021, 40(2): 174-181.
[15] 李长冬, 冼进业, 刘勇, 彭涛, 左清军, 龙晶晶, 冯鹏飞, 李炳辰. 暴雨作用下基于滑坡互信息量的白家包滑坡变形响应机制研究[J]. 暴雨灾害, 2021, 40(1): 19-26.
版权所有 © 2011《暴雨灾害》编辑部    鄂ICP备06018784号-3
地址: 湖北省武汉市东湖高新技术开发区金融港二路《暴雨灾害》编辑部
 邮编: 430205 Tel: 027-81804935   E-mail: byzh7939@163.com
技术支持: 北京玛格泰克科技发展有限公司