[an error occurred while processing this directive]
暴雨灾害
       首页|  期刊介绍|  编 委 会|  征稿简则|  期刊订阅|  下载中心|  编辑部公告|  联系我们


暴雨灾害  2018, Vol. 37 Issue (6): 511-521    DOI: 10.3969/j.issn.1004-9045.2018.06.003
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索  |   
一次南岭山脉前汛期强对流天气过程诊断分析
付炜1,3, 叶成志2,3, 王东海4, 唐明晖2,3, 陈红专5
1. 湖南省永州市气象台, 永州 425000;
2. 湖南省气象台, 长沙 410007;
3. 气象防灾减灾湖南省重点实验室, 长沙 410007;
4. 中山大学大气科学学院, 珠海 519082;
5. 湖南省怀化市气象台, 怀化 418000
Diagnostic analysis of a severe convective weather event in the Nanling Mountains during the pre-rainy season
FU Wei1,3, YE Chengzhi2,3, WANG Donghai4, TANG Minghui2,3, CHEN Hongzhuan5
1. Yongzhou Meteorological Observatory of Hunan Province, Yonghzou 425000;
2. Hunan Meteorological Observatory, Changsha 410007;
3. Key Laboratory of Meteorological Disaster Prevention and Mitigation in Hunan Province, Changsha 410007;
4. School of Atmospheric Sciences, Sun Yat-Sen University, Zhuhai 519082;
5. Huaihua Meteorological Observatory of Hunan Province, Huaihua 418000
 全文: PDF (13184 KB)   HTML ( 输出: BibTeX | EndNote (RIS)      背景资料
摘要 利用常规观测资料、FY-2G/2E卫星黑体亮温(TBB)资料、多普勒天气雷达资料与ERA-Interim再分析资料,对2016年4月17-18日南岭山脉一次强对流天气过程进行了诊断分析。结果表明:(1)该过程前期,受地面倒槽与辐合线影响出现暖区降水,后期随着地面冷空气侵入配合低空切变线与高空槽东移南压迅速转变为锋面降水,强降水落区与南岭山脉走向一致,大暴雨由多个中尺度对流系统(MCS)移入和有利地形作用造成;大冰雹、雷暴大风主要出现在暖区降水时段,暖区短时强降水以高质心降水为主,锋面越山之后强天气主要为低质心短时强降水,雷暴大风和冰雹较少出现。(2)雷达回波图上中层径向辐合的出现,对雷暴大风具有预警参考意义;中气旋、高垂直累积液态水含量(VIL)、回波悬垂、有界弱回波等回波特征对提前预警大冰雹有一定的指示作用。(3)不同类型强天气发生的大气层结条件存在差异,上层干区深厚、低层湿度条件较好有利于产生大冰雹,大的0-6 km垂直风切变有利于冰雹增长;大的下沉对流有效位能(DCAPE)是预报雷暴大风的一个参考指标;整层温度露点差和DCAPE小是判断只出现短时强降水的参考依据。(4)南岭及其附近地区"喇叭口"地形和迎风坡地形有利于低层气流辐合触发对流,造成暴雨多发和降水时间延长,南岭背风坡的锋生作用使南岭山脉南麓出现雷暴大风、冰雹等天气的可能性增大。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
付炜
叶成志
王东海
唐明晖
陈红专
关键词强对流天气   中尺度对流系统   地形影响   南岭山脉   诊断分析     
Abstract: Based on the routine upper-air and surface observations, temperature of brightness blackbody (TBB) from FY-2G/2E satellite, Doppler weather radar data and reanalysis data from ERA-Interim, we have conducted the diagnostic analysis of a severe convective weather event occurred in the Nanling Mountains from April 17 to 18 in 2016. Results are as follows. (1) Affected by inverted trough and convergence line at ground level, warm area precipitation occurred in the preceding stage of this event, and then frontal precipitation turned up rapidly in the later stage of this event with surface cold air mass intrusion and southeast-moving of low-level shear line and high level trough. The short-time strong rainfall zone tallies well with the trend of the Nanling mountains, and extremely heavy rain is caused by several mesoscale convective systems (MCS) and topographic forcing effect. High-echo-centroid short-time strong rainfall, thunderstorm gales and big hailstone occurred mainly in the warm area precipitation stage. After the front passed over mountain, low-echo-centroid short-time strong rainfall occurred but thunderstorm gales and hailstone seldom occurred. (2) Mesocyclone, high vertically integrated liquid (VIL) value, overhang echo and BWER observed in the radar echo map can provide important indicative features for the early warning of big hailstone, in which midaltitude radial convergence (MARC) is the key feature for the alerts of thunderstorm gales. (3) Deep dry layer at upper levels and high humidity at lower levels are favorable to the generation of big hailstone, and strong vertical wind shear between 0 and 6 km is favorable to the enlargement of hailstone. The large value of downdraft convective available potential energy (DCAPE) is a reference index for the forecast of thunderstorm gales, and the total layer dew-point depression and the small value of DCAPE are the reference basis to judge the occurrence of only short-time strong rainfall. (4) Bell-mouthed and windward direction topographic effect in the Nanling Mountains and its surrounding areas is conductive to the convergence of air flow in the low-level that triggers convection, causing the large frequency of heavy rainfall and the long lasting of precipitation. The frontogenesis in leeward side of Nanling Mountains increases the possibility of thunderstorm gale, hail and other weather in the southern foothills of Nanling Mountains.
Key wordssevere convective weather   mesoscale convective system   topography effect   Nanling Mountains   diagnostic analysis   
收稿日期: 2018-05-19;
基金资助:

中国气象局气象预报业务关键技术发展专项(YBGJXM (2017)1A-10);湖南省自然科学基金项目(2017JJ2149);湖南省气象局重点科研项目(XQKJ17A002);湖南省气象局预报员专项(XQKJ17C006)

通讯作者: 叶成志,主要从事多源观测资料综合应用及暴雨中尺度数值模拟技术研究。E-mail:yechengzhi_hunan@hotmail.com   
作者简介: 付炜,主要从事中尺度天气动力学研究与短期天气预报业务。E-mail:fuwei_0302@126.com
引用本文:   
付炜, 叶成志, 王东海,等 .2018. 一次南岭山脉前汛期强对流天气过程诊断分析[J]. 暴雨灾害, 37(6): 511-521.
FU Wei, YE Chengzhi, WANG Donghai, et al .2018. Diagnostic analysis of a severe convective weather event in the Nanling Mountains during the pre-rainy season[J]. Torrential Rain and Disasters, 37(6): 511-521.
 
没有本文参考文献
[1] 姚晨, 娄珊珊, 叶金印. 冷空气影响台风暴雨的中尺度分析及数值模拟[J]. 暴雨灾害, 2019, 38(3): 204-211.
[2] 刘晓波, 储海. 双台风形势下长三角地区一次大暴雨过程的成因分析[J]. 暴雨灾害, 2019, 38(2): 97-106.
[3] 史纬恒, 王磊, 韩飞, 于文杰, 刘有新. 聊城地区强对流天气预报模型的对流参数选取研究[J]. 暴雨灾害, 2018, 37(6): 549-557.
[4] 聂云, 周继先, 顾欣, 周艳, 杜小玲. “6.18”梅雨锋西段黔东南大暴雨个例诊断分析[J]. 暴雨灾害, 2018, 37(5): 445-454.
[5] 程向阳,朱浩,周昆,王凯. 安徽地区一次致灾雷暴过程的闪电特征分析[J]. 暴雨灾害, 2018, 37(3): 265-273.
[6] 徐明,黄治勇,高琦. 2016年5月20日广东信宜特大暴雨中尺度对流系统特征分析[J]. 暴雨灾害, 2018, 37(01): 32-40.
[7] 马月枝,张霞,胡燕平. 2016年7月9日新乡暖区特大暴雨成因分析[J]. 暴雨灾害, 2017, 36(6): 557-565.
[8] 武威,牛淑贞. 2015年河南两次东北冷涡型强对流天气对比分析[J]. 暴雨灾害, 2017, 36(05): 397-409.
[9] 谌伟,岳阳,刘佩廷,邓红,张蒙蒙. 鄂东北一次特大暴雨过程的两个中尺度对流系统分析[J]. 暴雨灾害, 2017, 36(04): 357-364.
[10] 朱娟,于杰,张铭. 多层模式中动能水平梯度的性质及诊断[J]. 暴雨灾害, 2017, 36(03): 267-275.
[11] 黄晓璐,荀学义,赵斐. 内蒙古强对流天气时空演变特征分析[J]. 暴雨灾害, 2017, 36(03): 287-291.
[12] 徐双柱, 韦惠红. 关于强对流天气预报的几点思考[J]. 暴雨灾害, 2016, 35(3): 197-202.
[13] 苏爱芳,张宁,袁小超,张青珍. 河南“7.14”强降水和“8.02”雷暴大风过程β中尺度对流系统对比分析[J]. 暴雨灾害, 2016, 35(2): 126-137.
[14] 李静楠,潘晓滨,臧增亮,赵定池,闵升. 一次华北暴雨过程的湿位涡诊断分析[J]. 暴雨灾害, 2016, 35(2): 158-165.
[15] 刘瑞翔1,2,丁治英1,孙凌光3,黄海波1. 夏季江淮地区中尺度对流系统的统计特征分析[J]. 暴雨灾害, 2015, 34(3): 215-.
版权所有 © 2011《暴雨灾害》编辑部    鄂ICP备06018784号-3
地址: 湖北省武汉市东湖高新技术开发区金融港二路《暴雨灾害》编辑部
 邮编: 430205 Tel: 027-81804935   E-mail: byzh7939@163.com
技术支持: 北京玛格泰克科技发展有限公司