[an error occurred while processing this directive]
暴雨灾害
       首页|  期刊介绍|  编 委 会|  征稿简则|  期刊订阅|  下载中心|  编辑部公告|  联系我们


暴雨灾害  2019, Vol. 38 Issue (3): 238-248    DOI: 10.3969/j.issn.1004-9045.2019.03.006
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索  |   
地基微波辐射计反演的青藏高原东侧甘孜大气温湿廓线分析
徐桂荣, 张文刚, 万霞, 王斌, 冷亮, 周伶俐, 万蓉
暴雨监测预警湖北省重点实验室 中国气象局武汉暴雨研究所, 武汉 430205
Analysis on atmospheric profiles retrieved from microwave radiometer observation at Ganzi in the eastern Qinghai-Tibet Plateau
XU Guirong, ZHANG Wengang, WAN Xia, WANG Bin, LENG Liang, ZHOU Lingli, WAN Rong
Hubei Key Laboratory for Heavy Rain Monitoring and Warning Research, Institute of Heavy Rain, China Meteorological Administration, Wuhan 430205, China
 全文: PDF (7359 KB)   HTML ( 输出: BibTeX | EndNote (RIS)      背景资料
摘要 微波辐射计能够获取分钟级别的大气温湿廓线,可以弥补气象探空在时间分辨率上的不足。本文利用青藏高原东侧甘孜站2017年8-10月并址观测的微波辐射计和探空资料,对微波辐射计反演大气廓线的精度进行分析,并利用这些廓线探讨甘孜大气热力和云水变化特征。分析结果显示,总体上微波辐射计反演参量与探空观测之间具有高相关系数,微波辐射计反演的温度、相对湿度和水汽密度与探空观测的偏差分别为1.3℃、-2%和0.71 g·m-3,相应的均方差分别为2.9℃、20%和1.08 g·m-3,非强降水对微波辐射计观测质量的影响较小。微波辐射计与探空的温度偏差在多数高度层上小于2℃,能够达到气象业务的偏差要求。非雨天时微波辐射计与探空的相对湿度偏差在多数高度层上约为10%,雨天时相对湿度偏差在3.5 km以下小于5%。基于甘孜微波辐射计资料的统计分析发现,甘孜大气具有白天干热、夜间湿冷的日变化特征,云液态水含量白天较小、夜间较大,而且白天低层云发展较弱、云底较高,夜间低层云发展较强、云底较低。云液态水含量在云天和雨天具有相似的垂直结构,云液态水含量随高度增加先快速增大,然后在一定高度内波动变化,之后又快速变小,能够较好地指示入云和出云的特征。此外,云天低层云的云体主要处在0.1-2.5 km高度,而雨天低层云的云体分布高度范围更大为0-3.5 km高度。这些分析结果表明,微波辐射计反演大气廓线在甘孜具有可用性,能为定量研究云特征提供科学数据。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
徐桂荣
张文刚
万霞
王斌
冷亮
周伶俐
万蓉
关键词青藏高原   微波辐射计   探空   大气廓线   云液态水含量     
Abstract: Microwave radiometer (MWR) can retrieve atmospheric profiles with a temporal resolution of several minutes, which compensates for the low temporal resolution of the meteorological radiosonde data. In this study, we use the data of MWR and radiosonde observed from August to October in 2017 at Ganzi, a station on the eastern side of the Qinghai-Tibet Plateau (QTP), to analyze the accuracy of atmospheric profiles retrieved from the MWR observation and investigate the properties of atmospheric thermal profiles and cloud liquid water content profiles over Ganzi. The results show that the correlation coefficient between the MWR and radiosonde observations is high. The general deviations of MWR-retrieved temperature, relative humidity and vapour density against the data of radiosonde were 1.3℃, -2%, and 0.71 g/m3, with the corresponding root mean square errors of 2.9℃, 20%, and 1.08 g·m-3, respectively. The impact of precipitation weather on the accuracy of observed data by the MWR was weak except for heavy rainfall weather conditions. The deviation of temperature profile between the MWR and radiosonde was less than 2℃ in most height layers, which can meet the deviation requirement of meteorological operations. The relative humidity deviation between the MWR and radiosonde under non-precipitation condition was about 10% in most height layers, while it was less than 5% below 3.5 km under precipitation conditions. Based on the statistical analysis of the MWR data in Ganzi, it was found that the atmosphere was dry and hot in daytime while wet and cold at nighttime during the observation period. At the same time, the cloud liquid water content was lower in daytime and larger at nighttime, and the development of low-level clouds was weaker during the daytime with higher cloud base heights and stronger during the nighttime with lower cloud base heights. Moreover, the cloud liquid water content showed a similar vertical structure under cloudy and rainy conditions, in which the cloud liquid water content rapidly increased with height and significantly decreased after a fluctuation within a certain height. This variation well indicated the characteristics of entering and leaving clouds. In addition, the cloud body of low-level clouds under cloudy conditions mainly located at the height of 0.1-2.5 km, while the cloud body of low-level clouds under rainy condition widely spread from the surface to 3.5 km. These analysis results showed that the atmospheric profiles retrieved from the MWR observation were credible at the Ganzi station, and the MWR can provide actual data for quantitative study of cloud characteristics.
Key wordsQinghai-Tibet Plateau   microwave radiometer   radiosonde   atmospheric profile   cloud liquid water content   
收稿日期: 2019-01-18;
基金资助:

国家自然科学基金重大研究计划项目(91637211);湖北省气象局科技发展基金重点科研项目(2018Z04)

作者简介: 徐桂荣,主要从事大气探测研究。E-mail:grxu@whihr.com.cn
引用本文:   
徐桂荣, 张文刚, 万霞,等 .2019. 地基微波辐射计反演的青藏高原东侧甘孜大气温湿廓线分析[J]. 暴雨灾害, 38(3): 238-248.
XU Gui-Rong, ZHANG Wen-Gang, WAN Xia, et al .2019. Analysis on atmospheric profiles retrieved from microwave radiometer observation at Ganzi in the eastern Qinghai-Tibet Plateau[J]. Torrential Rain and Disasters, 38(3): 238-248.
 
没有本文参考文献
[1] 甘文强, 蓝伟, 杜小玲, 朱文达, 齐大鹏, 唐磊, 胡亚文. 2018年1月底至2月初贵州低温雨雪天气成因初探[J]. 暴雨灾害, 2018, 37(5): 410-420.
[2] 周伶俐, 徐桂荣, 吴栋桥, 王斌, 张文刚. 激光云高仪和红外测温仪的云高观测性能比较分析[J]. 暴雨灾害, 2018, 37(5): 470-478.
[3] 王丽娟, 王俊超, 何明琼, 张海燕, 李芬, 张文刚. 基于微波辐射资料的一次高速公路段强浓雾过程监测分析[J]. 暴雨灾害, 2018, 37(4): 330-336.
[4] 黄一航,陈权亮,汪正林,张娟. 1979—2016年青藏高原低涡的变化特征研究[J]. 暴雨灾害, 2018, 37(02): 97-104.
[5] 杨晓亮,尚可,段宇辉,郭鸿鸣,李江波. 基于高分辨率探测资料的降水相态错报成因分析[J]. 暴雨灾害, 2017, 36(6): 535-541.
[6] 张文刚,徐桂荣,廖可文,颜国跑,冯光柳. 地基微波辐射计探测精度的变化特征分析[J]. 暴雨灾害, 2017, 36(04): 373-381.
[7] 李红莉,张文刚,付志康,周志敏,万霞. 一次暴雨过程的LAPS分析场与多源观测对比分析[J]. 暴雨灾害, 2017, 36(03): 207-216.
[8] 李文娟,赵放,赵璐,黄娟. 基于单站探空资料的不同强度短时强降水预报指标研究[J]. 暴雨灾害, 2017, 36(02): 132-138.
[9] 徐同,王晓峰,张蕾,杨玉华,李佳. 加密探空资料在华东区域业务模式中的应用试验[J]. 暴雨灾害, 2016, 35(4): 306-.
[10] 徐桂荣,乐新安,张文刚,万霞,冯光柳. COSMIC 掩星资料反演青藏高原大气廓线与 探空观测的对比分析[J]. 暴雨灾害, 2016, 35(4): 315-.
[11] 汪小康, 徐桂荣, 院琨. 不同强度降水发生前微波辐射计反演参数的差异分析[J]. 暴雨灾害, 2016, 35(3): 227-233.
[12] 谢晓林1,2,3,刘黎平. 云雷达联合微波辐射计反演混合性降水层云液态水含量的方法研究[J]. 暴雨灾害, 2016, 35(1): 1-.
[13] 陈英英, 杨凡,徐桂荣, 李德俊, 袁正腾, 熊洁. 基于雨雪天气背景的微波辐射计斜路径与天顶观测的反演结果对比分析[J]. 暴雨灾害, 2015, 34(4): 375-383.
[14] 张文刚,徐桂荣,万蓉,贺文煌,冯光柳. 基于地基微波辐射计的大气液态水及水汽特征分析[J]. 暴雨灾害, 2015, 34(4): 367-374.
[15] 雷蕾,孙继松,王华,丁青兰,吴庆梅. 偏东风冷空气与地形相互作用背景下北京局地强降水成因分析[J]. 暴雨灾害, 2014, 33(4): 325-332.
版权所有 © 2011《暴雨灾害》编辑部    鄂ICP备06018784号-3
地址: 湖北省武汉市东湖高新技术开发区金融港二路《暴雨灾害》编辑部
 邮编: 430205 Tel: 027-81804935   E-mail: byzh7939@163.com
技术支持: 北京玛格泰克科技发展有限公司