[an error occurred while processing this directive]
暴雨灾害
       首页|  期刊介绍|  编 委 会|  征稿简则|  期刊订阅|  下载中心|  编辑部公告|  联系我们


暴雨灾害  2019, Vol. 38 Issue (6): 576-586    DOI: 10.3969/j.issn.1004-9045.2019.06.002
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索  |   
“18·8”广东季风低压持续性特大暴雨成因分析
蔡景就1, 伍志方1,2, 陈晓庆3, 兰宇1, 郭姿佑4, 郭春迓1
1. 广东省气象台, 广州 510641;
2. 中国气象局广州热带海洋气象研究所/广东省区域数值天气预报重点实验室, 广州 510641;
3. 广东省气象探测数据中心, 广州 510641;
4. 广东省韶关市气象局, 韶关 512028
Cause analysis of persistent torrential rain associated with monsoon depression occurred in Guangdong on August 2018
CAI Jingjiu1, WU Zhifang1,2, CHEN Xiaoqing3, LAN Yu1, GUO Ziyou4, GUO Chunya1
1. Guangdong Meteorological Observatory, Guangzhou 510641;
2. Institute of Tropical and Marine Meteorology/Guangdong Provincial Key Laboratory of Regional Numerical Weather Prediction, CMA, Guangzhou 510641;
3. Guangdong Meteorological Observation Data Center, Guangzhou 510641;
4. Shaoguan Meteorological office of Guangdong, Shaoguan 512028
 全文: PDF (10969 KB)   HTML ( 输出: BibTeX | EndNote (RIS)      背景资料
摘要 利用NCEP FNL 1°×1°再分析、地面观测和广东雷达等资料,对2018年8月27日—9月1日广东季风低压持续性特大暴雨过程进行了综合分析,主要结论如下:(1)在南亚高压稳定少动、西太平洋副热带高压呈异常双脊形态、强盛的西南季风低空急流北抬的大尺度环流背景下,季风低压显著发生发展并缓慢偏西移,促使本次广东持续性特大暴雨过程的发生。(2)季风低压的生命史可划分为两个阶段:波动加强阶段与减弱消亡阶段。季风低压强度演变与暴雨落区范围大小的逐日分布是同步,但与日最大降水量逐日演变不完全同步。在低压由强转弱并加速远离阶段(8月30日),处于季风低压外围倒槽区的粤东地区却发生了破纪录的极端暴雨。(3)粤东极端暴雨发生在边界层动力辐合及水汽辐合最强、对流层中低层的层结最不稳定阶段,中层南海高压与季风低压的相互作用为暴雨增幅提供了有利条件。来自海洋的偏南暖湿气流北推与前期MCS冷池出流相互作用导致粤东沿海地面辐合线的形成,辐合线西段受莲花山脉地形阻挡和抬升作用长时间停滞维持,致使极端强降水回波的触发和维持。(4)雷达回波演变可划分为三个阶段:块状弱回波西移阶段、带状回波叠加强短雨带东北移阶段和回波减弱东南移阶段。强降水回波呈典型的低质心暖云对流降水结构。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
作者相关文章
蔡景就
伍志方
陈晓庆
兰宇
郭姿佑
郭春迓
关键词季风低压   持续性特大暴雨   低空急流   地面辐合线   强短雨带     
Abstract: Using the NCEP finally reanalysis data (1°×1°), intensive AWS (auto weather station) data, Doppler radar data in Guangdong, the formation mechanism of a persistent torrential rain event associated with monsoon depression occurred in Guangdong from 27 August to 1 September 2018 was analyzed. The main conclusions are as follows. (1) Factors such as the atmospheric circulation environment of a strong stable SAH, the anomalous two-ridge of the western Pacific subtropical high and the strengthening northward southwest monsoon low-level jet are the reason why the monsoon depression has been strengthened considerably and moved slowly to the west. (2) The life cycle of the monsoon depression can be divided into two phases, which include the volatility increasing phase and the weakening phase. The evolution of the intensity of the monsoon depression coincides with the area of the heavy rainfall, but not with the maximum daily rainfall. When the monsoon depression weakened and moved away on August 30, the record breaking extreme torrential rain occurred in the eastern Guangdong is covered by the trough of the monsoon depression. (3) The most intensive boundary-layer wind convergence, the strongest water vapor convergence and the most instable convection stratification all occurred at the stage when the extreme torrential rain happened. Additionally, a surface convergence line is originally formed between the warm moist air southerly flow from the ocean and a cold dome generated by previous convection. The stagnation of the western part of the convergence line is blocked and uplifted by the Lotus Mountain, triggering and maintaining the echo of extreme torrential rain. (4) The evolution of radar echo can be divided into three stages:stage of weak scatter echoes moving westward, stage of belt-shaped echoes associated with strong and short rainbands moving northeast and stage of weakening echoes moving southeast. The echo of heavy precipitation has a typical structure of convective precipitation in the warm cloud with low mass center.
Key wordsmonsoon depression   persistent torrential rain   low-level jet   surface convergence lines   strong and short rainband   
收稿日期: 2019-02-01;
基金资助:公益性行业(气象)科研专项(GYHY201506006);中国气象局预报员专项(CMAYBY2018-053);广东省气象局项目(GRMC2018Q06);广东省科技厅项目(2017B020244002,2019B02028016)
通讯作者: 伍志方,主要从事强对流短临预报和短期天气预报。Email:zhifang_wu@tom.com   
作者简介: 蔡景就,主要从事短期天气预报及灾害天气机理研究。E-mail:caijingj@mail2.sysu.edu.cn
引用本文:   
蔡景就, 伍志方, 陈晓庆,等 .2019. “18·8”广东季风低压持续性特大暴雨成因分析[J]. 暴雨灾害, 38(6): 576-586.
CAI Jingjiu, WU Zhifang, CHEN Xiaoqing, et al .2019. Cause analysis of persistent torrential rain associated with monsoon depression occurred in Guangdong on August 2018[J]. Torrential Rain and Disasters, 38(6): 576-586.
 
没有本文参考文献
[1] 杨晓亮, 杨敏, 段宇辉, 朱刚, 孙云. 京津冀一次暖区大暴雨的成因分析[J]. 暴雨灾害, 2021, 40(5): 455-465.
[2] 刘慧敏, 马晓华, 梁生俊, 康磊, 蒋伊蓉, 娄盼星, 艾锐. 2017年7月25日陕北局地特大暴雨过程的β中尺度特征分析[J]. 暴雨灾害, 2021, 40(4): 374-382.
[3] 杨梦兮, 刘梅, 柯丹, 陈圣劼. 2020年江淮地区梅雨异常的成因分析[J]. 暴雨灾害, 2020, 39(6): 555-563.
[4] 翟丹华, 张亚萍, 朱岩, 黎中菊, 邱鹏, 黎春蕾. 綦江流域一次破记录洪水过程的水文与雷达回波特征分析[J]. 暴雨灾害, 2020, 39(6): 603-610.
[5] 郭姿佑, 伍志方, 蔡景就, 张华龙, 陈晓旸. “18·8”广东季风低压持续性特大暴雨水汽输送特征[J]. 暴雨灾害, 2019, 38(6): 587-596.
[6] 叶朗明, 吴乃庚, 张华龙, 蔡景就, 伍志方. 海陆风和地形对一次弱天气背景下暖区特大暴雨的影响分析[J]. 暴雨灾害, 2019, 38(6): 597-605.
[7] 靳振华, 易笑园, 孙晓磊, 刘一玮, 李钢. 天津沿海一次强降水超级单体环境条件及结构分析[J]. 暴雨灾害, 2019, 38(6): 606-614.
[8] 谌芸, 陈涛, 汪玲瑶, 李晟祺, 徐珺. 中国暖区暴雨的研究进展[J]. 暴雨灾害, 2019, 38(5): 483-493.
[9] 李明华, 陈芳丽, 姜帅, 甘泉, 林汇丰, 曾丹丹, 李娇娇, 马泽义, 张子凡. “18.8”粤东暴雨中心极端强降水“列车效应”分析[J]. 暴雨灾害, 2019, 38(4): 329-337.
[10] 刘晶, 于碧馨, 赵克明, 杨莲梅. 乌鲁木齐“4.24”短时降水和冰雹中小尺度特征对比分析[J]. 暴雨灾害, 2018, 37(4): 347-355.
[11] 陈宣淼,余贞寿,叶子祥. 浙南闽北登陆台风发生区域性暴雨增幅的环境场特征分析[J]. 暴雨灾害, 2018, 37(3): 246-256.
[12] 杨芳园,沈茜,周稀,邹灵宇,段燕楠,潘娅婷,李晓鹏. 云南省一次飑线大风天气过程的中尺度特征分析[J]. 暴雨灾害, 2018, 37(01): 48-56.
[13] 顾佳佳,武威. 2016年“7.9”豫北特大暴雨过程的中尺度特征分析[J]. 暴雨灾害, 2017, 36(05): 440-452.
[14] 张树民,缪燕,周金磊,陈铁,张琪,顾沛澍. 副热带高压脊线附近江苏两次强对流天气对比分析[J]. 暴雨灾害, 2017, 36(05): 422-430.
[15] 武威,牛淑贞. 2015年河南两次东北冷涡型强对流天气对比分析[J]. 暴雨灾害, 2017, 36(05): 397-409.
版权所有 © 2011《暴雨灾害》编辑部    鄂ICP备06018784号-3
地址: 湖北省武汉市东湖高新技术开发区金融港二路《暴雨灾害》编辑部
 邮编: 430205 Tel: 027-81804935   E-mail: byzh7939@163.com
技术支持: 北京玛格泰克科技发展有限公司