[an error occurred while processing this directive]
暴雨灾害
       首页|  期刊介绍|  编 委 会|  征稿简则|  期刊订阅|  下载中心|  编辑部公告|  联系我们


暴雨灾害  2019, Vol. 38 Issue (6): 587-596    DOI: 10.3969/j.issn.1004-9045.2019.06.003
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索  |   
“18·8”广东季风低压持续性特大暴雨水汽输送特征
郭姿佑1,2, 伍志方2,3, 蔡景就2, 张华龙2, 陈晓旸1
1. 广东省韶关市气象局, 韶关 512028;
2. 广东省气象台, 广州 510640;
3. 中国气象局广州热带海洋气象研究所/广东省区域数值天气预报重点实验室, 广州 510641
Analysis of water vapor transport characteristics of a monsoon low-pressure continuous heavy rain event at the end of August 2018 in Guangdong area
GUO Ziyou1,2, WU Zhifang2,3, CAI Jingjiu2, ZHANG Hualong2, CHEN Xiaoyang1
1. Shaoguan Meteorological Bureau of Guangdong Province, Shaoguan 512028;
2. Meteorological Observatory of Guangdong, Guangzhou 510640;
3. Institute of Tropical and Marine Meteorology/Guangdong Provincial Key Laboratory of Regional Numerical Weather Prediction, CMA, Guangzhou 510641
 全文: PDF (10297 KB)   HTML ( 输出: BibTeX | EndNote (RIS)      背景资料
摘要 利用NCEP再分析资料、地面观测资料和GDAS资料,对2018年8月27日—9月1日广东受季风低压影响发生的超历史极值、持续性特大暴雨天气过程的水汽输送特征进行了详细分析,同时利用Hysplit后向轨迹模式对水汽来源进行了诊断分析。结果表明:持续性特大暴雨过程期间,我国华南沿海为北半球的水汽汇合区,水汽主要来源于印度洋,经印度半岛北上至青藏高原南部向东转进入华南上空;另一部分水汽来源于西北太平洋和南海地区,三支水汽汇聚于华南上空,建立了稳定、持续的水汽输送通道,使得此次特大暴雨过程范围广、持续时间长。降水发生前期水汽辐合中心位于华南东部沿海, 29日开始逐渐向西移动,于夜间达到峰值,水汽辐合最为明显,31日夜间其中心进一步西移并趋于减弱;水汽通量势函数高值区的变化与此次过程中降水峰值的逐日变化对应良好。逐日水汽辐合表现出明显的日变化特点,白天水汽辐合减弱,夜间明显加强,此次持续性特大暴雨过程呈现出季风降水特征。华南区域南边界是主要的水汽输入边界,且水汽输入主要集中在低层,尤其是华南中东部南边界的水汽输入量持续较高;29日夜间开始华南区域南边界的水汽输入量明显增大, 30日达到最大,与大范围大暴雨和特大暴雨的区域及时段基本吻合。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
作者相关文章
郭姿佑
伍志方
蔡景就
张华龙
陈晓旸
关键词季风低压   持续性特大暴雨   水汽输送   水汽收支     
Abstract: Based on the NCEP reanalysis, conventional observation and Global Data Assimilation System (GDAS) data, the characteristics of water vapor transport were analyzed in a historically extreme event of persistent heavy rainstorm affected by a monsoon low pressure in Guangdong province from August 27 to September 1, 2018. Using the Hysplit backward trajectory model, the water vapor source was diagnosed. The results show that:(1) During the continuous heavy rainstorm, the southeast coast of China was the water vapor convergence area in northern hemisphere, and water vapor mainly came from the Indian Ocean, which then flowed northward from the Indian peninsula to the south of the Qinghai-Tibet Plateau, and then turned east into the south of China. Other portion of the water vapor came from the northwestern Pacific Ocean and the South China Sea. The three water vapor sources gathered in the South China and established a stable and continuous water vapor transport channel, which made the torrential rain process wide and lasted for a long time. (2) The water vapor convergence center in the early stage of precipitation occurred on the eastern coast of South China. On August 29th, its center gradually moved westward and the potential function averaged over Guangdong area reached the peak of the whole precipitation event at the night of 29th when the water vapor convergence was the most obvious. At the 31st night, the water vapor convergence center moved further westward and tended to weaken. The change of the high value of the water vapor flux potential function corresponded to the daily variation of precipitation peak during the torrential rain. (3) The daily water vapor convergence showed obvious daily variation. During the daytime, the water vapor convergence was weakened and obviously strengthened at the nighttime, showing the characteristics for monsoon precipitation. (4) The southern boundary of South China was the main water vapor input boundary and mainly concentrated in the lower layer, especially the water vapor input of the southeastern border of South China has been maintained at a high level. The water vapor input from the southern boundary of South China has been significantly increased from the night of 29th, and the whole layer's water vapor flux reached its maximum on the 30th, which was consistent with the area and time of the heavy rain.
Key wordsmonsoon low pressure   persistent heavy rain   water vapor transport   water vapor budget   
收稿日期: 2019-05-10;
基金资助:公益性行业(气象)科研专项(CYHY2015060066);广东省科技厅项目(2017B020244002);气象预报业务关键技术发展专项[YBGJXM (2017)02_05];中国气象局强对流预报技术专家创新团队和广东省短临监测预警技术创新团队
通讯作者: 伍志方,主要从事灾害性天气预报和雷达应用研究。E-mail:zhifang_wu@tom.com   
作者简介: 郭姿佑,主要从事短期天气预报工作和研究。E-mail:2974005348@qq.com
引用本文:   
郭姿佑, 伍志方, 蔡景就,等 .2019. “18·8”广东季风低压持续性特大暴雨水汽输送特征[J]. 暴雨灾害, 38(6): 587-596.
GUO Ziyou, WU Zhifang, CAI Jingjiu, et al .2019. Analysis of water vapor transport characteristics of a monsoon low-pressure continuous heavy rain event at the end of August 2018 in Guangdong area[J]. Torrential Rain and Disasters, 38(6): 587-596.
 
没有本文参考文献
[1] 毛紫怡, 李国平, 许霖. 湖南一次持续性暴雨过程的水汽输送与收支特征[J]. 暴雨灾害, 2021, 40(5): 513-522.
[2] 张超, 罗伯良, 彭莉莉, 谢傲, 李易芝. 湖南6月区域持续性暴雨的强信号及预报概念模型[J]. 暴雨灾害, 2021, 40(1): 37-43.
[3] 肖莺, 杜良敏, 高雅琦. 2020年湖北梅雨异常特征及成因分析[J]. 暴雨灾害, 2020, 39(6): 571-577.
[4] 李晓容, 高青云, 付世军. 四川盆地东北部三次持续性暴雨过程水汽输送特征分析[J]. 暴雨灾害, 2020, 39(3): 234-240.
[5] 蔡景就, 伍志方, 陈晓庆, 兰宇, 郭姿佑, 郭春迓. “18·8”广东季风低压持续性特大暴雨成因分析[J]. 暴雨灾害, 2019, 38(6): 576-586.
[6] 杨浩, 崔春光, 王晓芳, 张文刚, 王斌. 气候变暖背景下雅鲁藏布江流域降水变化研究进展[J]. 暴雨灾害, 2019, 38(6): 565-575.
[7] 李明华, 陈芳丽, 姜帅, 甘泉, 林汇丰, 曾丹丹, 李娇娇, 马泽义, 张子凡. “18.8”粤东暴雨中心极端强降水“列车效应”分析[J]. 暴雨灾害, 2019, 38(4): 329-337.
[8] 崔慧慧, 苏爱芳. 2018年初豫南特大暴雪过程的特征与成因分析[J]. 暴雨灾害, 2019, 38(2): 169-176.
[9] 刘晓波, 储海. 双台风形势下长三角地区一次大暴雨过程的成因分析[J]. 暴雨灾害, 2019, 38(2): 97-106.
[10] 张云惠, 于碧馨, 王智楷, 贾丽红. 伊犁河谷夏季两次极端暴雨过程的动力机制与水汽输送特征[J]. 暴雨灾害, 2018, 37(5): 435-444.
[11] 张楠,何群英,刘彬贤,吴振玲,刘一玮,卢焕珍. 非典型环流形势下天津一次局地暴雨过程中尺度特征分析[J]. 暴雨灾害, 2018, 37(3): 230-237.
[12] 谢泽明,周玉淑,杨莲梅. 新疆降水研究进展综述[J]. 暴雨灾害, 2018, 37(3): 204-212.
[13] 杨雨轩,张立凤,谢胜浪. 2015年12月广东罕见暴雨的成因分析[J]. 暴雨灾害, 2016, 35(4): 326-.
[14] 田秀霞, 李娟, 何丽华, 范俊红, 李菊香 . 2011年初冬华北南部回流暴雪诊断分析[J]. 暴雨灾害, 2016, 35(3): 243-251.
[15] 张楠,何群英,刘一玮,余文韬,王庆元,胡玲. 天津地区两次副高边缘特大暴雨过程的多尺度对比分析[J]. 暴雨灾害, 2014, 33(4): 372-379.
版权所有 © 2011《暴雨灾害》编辑部    鄂ICP备06018784号-3
地址: 湖北省武汉市东湖高新技术开发区金融港二路《暴雨灾害》编辑部
 邮编: 430205 Tel: 027-81804935   E-mail: byzh7939@163.com
技术支持: 北京玛格泰克科技发展有限公司