[an error occurred while processing this directive]
暴雨灾害
       首页|  期刊介绍|  编 委 会|  征稿简则|  期刊订阅|  下载中心|  编辑部公告|  联系我们


暴雨灾害  2019, Vol. 38 Issue (6): 632-639    DOI: 10.3969/j.issn.1004-9045.2019.06.008
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索  |   
雨雾共生天气下积冰模型关键参量的研究
周悦1, 高正旭1, 叶丽梅1, 吕晶晶2, 杨加伦3
1. 武汉区域气候中心, 武汉 430074;
2. 南京信息工程大学 气象灾害省部共建教育部重点实验室, 南京 210044;
3. 中国电力科学研究院, 北京 100192
Study on the key parameters of icing model during the supercooled fog mixed with freezing drizzle weather
ZHOU Yue1, GAO Zhengxu1, YE Limei1, Lü Jingjing2, YANG Jialun3
1. Wuhan Regional Climate Center, Wuhan 430074;
2. Key Laboratory of Meteorological Disaster of Ministry of Education, Nanjing University of Information Science and Technology, Nanjing 210044;
3. China Electric Power Research Institute, Beijing 100192
 全文: PDF (2118 KB)   HTML ( 输出: BibTeX | EndNote (RIS)      背景资料
摘要 利用在2008—2016年冬季湖北恩施雷达站、金沙本底站、神农架大草坪和神农顶观测得到的30次持续时间超过24 h的完整电线积冰过程观测资料,分析了雨雾共生天气对积冰过程的宏观影响,根据积冰过程的物理模型探讨了过冷雾和冻毛毛雨天气下关键模拟参量的分布特征,最后给出了雨雾共生天气积冰厚度模拟的演变特征。结果表明:山区积冰的持续时间是影响其过程最大冰厚的关键因素,雨凇过程中冻毛毛雨的发生时次最集中,且其出现可能导致冰厚爆发性增长,有无冻毛毛雨出现时段的冰厚增长率平均值分别为1.26 mm·h-1和-0.11 mm·h-1;碰撞率是抑制过冷雾积冰的主要参量,其均值在0.1左右,而冻结率则是抑制冻毛毛雨积冰的主要参量,其均值在0.6左右;过冷雾积冰和冻毛毛雨积冰分别表现出阶段性增长和持续增长的变化特征,且冻毛毛雨积冰会抑制过冷雾积冰的发展。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
作者相关文章
周悦
高正旭
叶丽梅
吕晶晶
杨加伦
关键词雨雾共生   积冰模型   模拟参量   电线积冰     
Abstract: Based on complete observations of 30 wire icing cases with the duration over 24 h at Enshi radar station, Jinsha background station, Dacaoping and Shenlongding in Shenlongjia over Hubei in the winters of 2008 to 2016, we have conducted an analysis of the effect of supercooled fog mixed with freezing drizzle on ice accretion processes, discussed distributions and influence characteristics of key simulation parameters on the basis of the icing physic model, and lastly, revealed the evolutions of simulated ice thickness of supercooled fog and freezing drizzle. The results show that the duration of icing in the mountain area is a key factor that determines the maximum ice thickness during the icing processes. The frequency of freezing drizzle is mostly concentrated in the processes of glaze, probably leading to the explosive growth of ice thickness when it occurs. The averaged growth rates of ice thickness during the freezing drizzle and no-precipitation periods are 1.26 mm·h-1 and -0.11 mm·h-1, respectively. Collision efficiency is the main parameter restraining the development of icing during supercooled-fog period, with an averaged value of 0.1 or so. Meanwhile, accretion efficiency is the main parameter restraining the development of icing during freezing-drizzle period, and its mean value is around 0.6. Supercooled-fog icing and freezing-drizzle icing show the characteristics of phased growth and continuous growth, respectively. The freezing-drizzle icing restrains the development of supercooled-fog icing.
Key wordsfreezing fog mixed with freezing drizzle   icing model   simulation parameter   wire icing   
收稿日期: 2019-04-29;
基金资助:国家自然科学基金项目(41875170,41505121)
作者简介: 周悦,主要从事云雾降水与电线积冰气象条件研究。E-mail:zhouyue8510@163.com
引用本文:   
周悦, 高正旭, 叶丽梅,等 .2019. 雨雾共生天气下积冰模型关键参量的研究[J]. 暴雨灾害, 38(6): 632-639.
ZHOU Yue, GAO Zhengxu, YE Limei, et al .2019. Study on the key parameters of icing model during the supercooled fog mixed with freezing drizzle weather[J]. Torrential Rain and Disasters, 38(6): 632-639.
 
没有本文参考文献
没有找到本文相关文献
版权所有 © 2011《暴雨灾害》编辑部    鄂ICP备06018784号-3
地址: 湖北省武汉市东湖高新技术开发区金融港二路《暴雨灾害》编辑部
 邮编: 430205 Tel: 027-81804935   E-mail: byzh7939@163.com
技术支持: 北京玛格泰克科技发展有限公司