[an error occurred while processing this directive]
暴雨灾害
       首页|  期刊介绍|  编 委 会|  征稿简则|  期刊订阅|  下载中心|  编辑部公告|  联系我们


暴雨灾害  2020, Vol. 39 Issue (1): 1-9    DOI: 10.3969/j.issn.1004-9045.2020.01.001
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索  |   
三类高空冷涡的划分及其动态合成分析
沈新勇1,2, 张弛1, 高焕妍1, 王林1, 李小凡3
1. 南京信息工程大学气象灾害教育部重点实验室/气候与环境变化国际合作联合实验室/气象灾害预报预警与评估协同创新中心, 南京 210044;
2. 南方海洋科学与工程广东省实验室(珠海), 珠海 519082;
3. 浙江大学地球科学学院, 杭州 310027
Classification and dynamic composite analysis of three kinds of high altitude cold vortex
SHEN Xinyong1,2, ZHANG Chi1, GAO Huanyan1, WANG Lin1, LI Xiaofan3
1. Key Laboratory of Meteorological Disaster, Ministry of Education/Joint International Research Laboratory of Climate and Environment Change/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing 210044;
2. Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai), Zhuhai 519082;
3. School of Earth Sciences, Zhejiang University, Hangzhou 310027
 全文: PDF (7097 KB)   HTML ( 输出: BibTeX | EndNote (RIS)      背景资料
摘要 结合地理分布将中国北方高空冷涡划分为东北冷涡(120°-145°E,35°-60°N),华北冷涡(100°-130°E,30°-45°N)以及东蒙冷涡(100°-130°E,40°-55°N)三类,根据2000-2018年NCEP/NCAR 1°×1°再分析资料和日降水资料对19 a冷涡个例进行筛选对比,统计分析三类冷涡的活动规律,利用动态合成分析方法分析三类冷涡的结构和降水特征。结果表明:在490例高空冷涡个例中,遗漏的冷涡个例有2个,重复的个例有13个,剩下475例个例都能较好的被选出和归类,给出的三类冷涡定义较为合理。东北冷涡和东蒙冷涡在全年皆可生成,而华北冷涡在12月和2月没有发现。东北冷涡在4、5月生成最多,在3月和8月生成较少。华北冷涡在5月生成最多,冬季生成较少。东蒙冷涡在5、6、9三个月生成较多,在2、3和11月生成较少。对三类冷涡的动态合成分析表明:在结构方面,考察位势高度、温度、涡度、和等熵位涡分布,得到东北冷涡平均强度最强,东蒙冷涡次之,华北冷涡最弱;在降水方面,冷涡强度最强的时段,冷涡降水主要出现在高空急流出口区以北,对应有强的高层辐散。由于低层湿度分布以及水汽输送强度的不同,三类冷涡的降水大值中心位置有所差别,并且华北冷涡平均降水强度最大,东北冷涡次之,东蒙冷涡相对较小。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
沈新勇
张弛
高焕妍
王林
李小凡
关键词东北冷涡   华北冷涡   东蒙冷涡   统计特征   合成分析   类型划分     
Abstract: Based on geographical distribution, the North China cold vortexes are divided into three categories:Northeast China Cold Vortex (120°-145°E, 35°-60°N), North China Cold Vortex (100°-130°E, 30°-45°N) and East Mongolia Cold Vortex (100°-130°E, 40°-55°N). According to NCEP/NCAR 1°×1° reanalysis datasets and daily precipitation datasets from 2000 to 2018, the cold vortex cases in 19 years are screened, the activity rules of the three kinds of cold vortexes are statistically analyzed, and the structure and precipitation characteristics of the three kinds of cold vortexes are analyzed by dynamic composite analysis method. The results show that in the 490 cases of high-altitude cold vortexes in 19 years, 2 cases are missed, and 13 cases are repeated. The remaining 475 cases can be well selected and classified, and the definitions of three types of cold vortexes are reasonable. Northeast Cold Vortex and East Mongolian Cold Vortex can occur throughout the year, while North China Cold Vortexes are not found in December and February. Northeast Cold Vortexes are found mostly in April and May, and also in March and August with less frequency. North China cold vortexes are found mostly in May and less frequently in winter. In May, June and September, there are more cold vortexes generated in east Mongolia, while there are fewer in February, March and November. Dynamic composite analysis is used to analyze the three types of cold vortices. In terms of structure, the distribution of potential height, temperature, vorticity, and isentropic potential vortices show that the average strength of the Northeast China Cold Vortex is the strongest, followed by the East Mongolia Cold Vortex, and the North China Cold Vortex is the weakest. In the period when the cold vortex intensity is the strongest, the cold vortex precipitation mainly appears in the north of the outlet area of the upper jet, with strong divergence. Due to the differences in the distribution of low-layer humidity and the intensity of moisture transport, there are differences in the location of large precipitation centers of the three types of cold vortexes. The North China Cold Vortex has the largest mean precipitation intensity, followed by the Northeast Cold Vortex, and the East Mongolia Cold Vortex has relatively weak precipitation.
Key wordsNortheast China cold vortex   North China cold vortex   East Mongolia cold vortex   statistical characteristic   composite analysis   classification of the type   
收稿日期: 2019-09-10;
基金资助:国家自然科学基金(41530427;41790471);中国科学院战略性先导科技专项(XDA20100304);国家重点研发计划(2016YFC0203301);国家自然科学基金(41975054;41930967;41775040)
作者简介: 沈新勇,主要从事中尺度气象学研究。E-mail:shenxy@nuist.edu.cn
引用本文:   
沈新勇, 张弛, 高焕妍,等 .2020. 三类高空冷涡的划分及其动态合成分析[J]. 暴雨灾害, 39(1): 1-9.
SHEN Xinyong, ZHANG Chi, GAO Huanyan, et al .2020. Classification and dynamic composite analysis of three kinds of high altitude cold vortex[J]. Torrential Rain and Disasters, 39(1): 1-9.
 
没有本文参考文献
[1] 李国平, 陈佳. 西南涡及其暴雨研究新进展[J]. 暴雨灾害, 2018, 37(4): 293-302.
[2] 武威,牛淑贞. 2015年河南两次东北冷涡型强对流天气对比分析[J]. 暴雨灾害, 2017, 36(05): 397-409.
[3] 刘瑞翔1,2,丁治英1,孙凌光3,黄海波1. 夏季江淮地区中尺度对流系统的统计特征分析[J]. 暴雨灾害, 2015, 34(3): 215-.
[4] 陈孝明1, 2,胡淼3,黄俊杰1, 2. 湖北省电线积冰日数气候特征与大气环境异常的关系研究[J]. 暴雨灾害, 2015, 34(3): 260-.
[5] 王宇欣,宋瑶. 东北冷涡引发的强雷暴个例分析[J]. 暴雨灾害, 2014, 33(3): 264-272.
[6] 孙燕, 尹东屏, 姚丽娜, 曹舒娅. 近50 a江苏梅雨量异常的时空分布及其环流特征[J]. 暴雨灾害, 2012, 31(02): 149-154.
[7] 敖 雪, 王振会, 徐桂荣, 翟晴飞, 潘旭光. 地基微波辐射计资料在降水分析中的应用[J]. 暴雨灾害, 2011, 30(4): 358-365.
[8] 吴迪;寿绍文;姚秀萍;. 东北冷涡暴雨过程中干侵入特征及其与降水落区的关系[J]. 暴雨灾害, 2010, 29(02): 9-14.
[9] 李银娥;谌伟;张萍萍;. 一次华北冷涡暴雨过程的诊断分析[J]. 暴雨灾害, 2007, 26(04): 20-24.
[10] 王芹;. 2005年7月7~10日襄樊大暴雨天气分析及模型预报检验[J]. 暴雨灾害, 2006, 25(03): 26-28.
[11] 郑蓉. 1998年夏季长江三峡区间致洪暴雨分析[J]. 暴雨灾害, 2002, 21(04): 7-10.
[12] 胡江林,李劲. 湖北省天空云量的特征分析及其预报[J]. 暴雨灾害, 2000, 19(02): 16-18.
版权所有 © 2011《暴雨灾害》编辑部    鄂ICP备06018784号-3
地址: 湖北省武汉市东湖高新技术开发区金融港二路《暴雨灾害》编辑部
 邮编: 430205 Tel: 027-81804935   E-mail: byzh7939@163.com
技术支持: 北京玛格泰克科技发展有限公司