[an error occurred while processing this directive]
暴雨灾害
       首页|  期刊介绍|  编 委 会|  征稿简则|  期刊订阅|  下载中心|  编辑部公告|  联系我们


暴雨灾害  2020, Vol. 39 Issue (1): 52-62    DOI: 10.3969/j.issn.1004-9045.2020.01.006
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索  |   
冷涡背景下河北雷暴大风环境条件与对流风暴演变个例分析
杨晓亮1,2, 杨敏3, 隆璘雪1, 艾敬宜1
1. 河北省气象台, 石家庄 050021;
2. 河北省气象与生态环境重点实验室, 石家庄 050021;
3. 河北省气象行政技术服务中心, 石家庄 050021
Analysis of environmental condition and convective storm evolution of a thunderstorm gale event under cold vortex in Hebei
YANG Xiaoliang1,2, YANG Min3, LONG Linxue1, AI Jingyi1
1. Hebei Meteorological Observatory, Shijiazhuang 050021;
2. Hebei Key Laboratory for Meteorological and Eco-environment, Shijiazhuang 050021;
3. Heibei Meteorological Administrative&Technical Service Center, Shijiazhuang 050021
 全文: PDF (14896 KB)   HTML ( 输出: BibTeX | EndNote (RIS)      背景资料
摘要 2017年7月9日河北中南部出现一次区域性雷暴大风天气过程,该过程属于典型的高空冷平流强迫型强对流天气,对流云团先后影响河北中南部的南(Ⅰ)、北(Ⅱ)两个区域。利用常规地面高空观测资料以及卫星云图、多普勒天气雷达、区域自动站与NCEP 1°×1°再分析资料,分析了此过程发生的环境条件以及对流风暴的演变特征。结果表明:(1)本次过程发生在蒙古冷涡天气背景下,冷涡后部冷空气与低层暖湿空气在河北南部形成"上干冷下暖湿"的不稳定层结以及较强垂直风切变,区域Ⅰ对流由地形抬升触发,并在高空西北气流作用下向东南方向移动,而区域Ⅱ对流由冷锋直接触发,在平流和传播的共同作用下向东偏北方向移动。(2)造成区域Ⅰ大风的对流系统有飑线、与中气旋伴随的超级单体,飑线成熟阶段后侧入流急流在1 km以下超过31 m·s-1,地面大风出现在大风速核前沿、雷暴高压移向的前方和小时正变压中心附近;造成区域Ⅱ大风的对流系统有多种形态,如超级单体、块状回波和飑线,飑线大风出现在阵风锋后侧到小时正变压中心之间。飑线回波强度减弱后冷池密度流、动量下传和变压风共同作用仍可造成地面大风。(3)雷达低仰角径向速度图超过30m·s-1的大风速核配合地面5 hPa以上的小时正变压,风廓线雷达5 km以下的7~10 m·s-1下沉速度伴随1 km以下强的西北风,可作为地面8级以上雷暴大风0~2 h临近预警的参考指标。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
作者相关文章
杨晓亮
杨敏
隆璘雪
艾敬宜
关键词雷暴大风   对流风暴   飑线   雷暴高压   临近预警     
Abstract: A regional thunderstorm gale weather event occurred in central and southern Hebei on 9 July 2017. It is a typical severe convective weather with the cold advection forcing in upper air. The convective cloud clusters successively affected the south area (I) and north area (II) of central and southern Hebei during this event. Based on the routine upper-air and surface observations, satellite cloud images, Doppler weather radar data, observations from regional automatic weather stations and NCEP reanalysis data with 1°×1° resolution, we have conducted an analysis of the environmental conditions and the evolution characteristics of the convective storm when this event occurred. The main results are as follow. (1) This event occurs under the background of the Mongolian cold vortex weather. The cold air at the rear of the cold vortex and the warm and wet air in the low-level jointly form an unstable stratification with the dry and cold air in high level and the warm and humid air in low level, in which vertical wind shear is strong in southern Hebei Province. The convection in area I is triggered by topographic uplift, and moves southeastwards under the action of northwest airflow in the high level. Nevertheless, the convection in area II is directly triggered by the cold front, and moves eastwards and northwards under the combined action of advection and propagation. (2) The convective systems causing the gale in area I include the squall line and the supercell associated with mesocyclone. The rear inflow jet below 1 km exceeds 31 m·s-1 in mature stage of the squall line. The surface gale appears at the front of the center of high wind speed, the front of the thunderstorm high and the vicinity of hourly positive pressure center. There are various types of convective systems causing the gale in area II, including supercell, block-shaped echo and squall line. The gale squall line appears between the rear side of gust front and the hourly positive pressure center. After the echo intensity of the squall line is decreased, the combined effect of the cold pool density flow, the downward momentum transportation and the allobaric wind can still cause surface gale. (3) The fact that high wind speed core exceeding 30 m·s-1 in the radar radial velocities at the low elevation angle corresponded to the hourly positive surface pressure change of over 5 hPa, and the descending velocity of 7-10 m·s-1 below 5 km followed by the strong northwest wind below 1 km in the wind profiler radar product can be used as a reference indicator for the 0-2 h nowcasting and warning of the thunderstorm gale above level 8 on the ground.
Key wordsthunderstorm gale   convective storm   squall line   thunderstorm high   nowcasting and warning   
收稿日期: 2019-03-05;
基金资助:环渤海区域科技协同创新基金项目(QYXM201804);河北省气象局“强对流创新团队”;河北省科技厅科技研发平台建设专项(18964201H)
作者简介: 杨晓亮,主要从事灾害性天气预报技术与方法研究。E-mail:hbsqxt087@sina.com
引用本文:   
杨晓亮, 杨敏, 隆璘雪,等 .2020. 冷涡背景下河北雷暴大风环境条件与对流风暴演变个例分析[J]. 暴雨灾害, 39(1): 52-62.
YANG Xiaoliang, YANG Min, LONG Linxue, et al .2020. Analysis of environmental condition and convective storm evolution of a thunderstorm gale event under cold vortex in Hebei[J]. Torrential Rain and Disasters, 39(1): 52-62.
 
没有本文参考文献
[1] 屈梅芳, 俞小鼎, 农孟松, 翟丽萍, 赖珍权. 一次弱垂直风切变环境下飑线发展维持的成因分析[J]. 暴雨灾害, 2021, 40(5): 466-473.
[2] 华雯丽, 杨晓霞, 田雪珊, 李恬, 宋嘉佳, 张磊. 山东省雷暴大风天气学分型与物理诊断量统计特征[J]. 暴雨灾害, 2021, 40(4): 362-373.
[3] 吕晓娜, 牛淑贞, 张一平, 栗晗. 基于概率与权重的雷暴大风潜势客观预报方法研究[J]. 暴雨灾害, 2020, 39(1): 20-29.
[4] 唐钱奎, 张涛. 成都一次雷暴大风的中尺度特征分析[J]. 暴雨灾害, 2019, 38(4): 338-345.
[5] 唐明晖, 王强, 徐靖宇, 贺科. 低层暖平流强迫背景下湖南两次飑线过程对比分析[J]. 暴雨灾害, 2019, 38(2): 115-125.
[6] 陈云辉, 许爱华, 许彬, 陈娟, 李婕. 江西一次极端雷暴大风过程的中尺度特征与成因分析[J]. 暴雨灾害, 2019, 38(2): 126-134.
[7] 许彬, 许爱华, 陈云辉, 陈翔翔. 强对流天气概念模型在江西“3·4”极端大风预报中的应用[J]. 暴雨灾害, 2019, 38(2): 144-151.
[8] 张弛, 支树林, 许爱华. 一次罕见强飑线10级大风的雷达回波特征分析[J]. 暴雨灾害, 2019, 38(2): 135-143.
[9] 张桂莲, 赵艳丽, 黄晓璐, 祁雁文, 常欣, 李卉. “9.24”内蒙古东南部致灾飑线过程成因分析[J]. 暴雨灾害, 2019, 38(1): 41-47.
[10] 刘靓珂, 张弛, 沈新勇, 王咏青, 李小凡. 一次飑线理想试验的水汽方程尺度分析[J]. 暴雨灾害, 2018, 37(6): 522-527.
[11] 肖雯, 刘春, 陆岳. 赣鄂皖交界地区一次飑线过程特征分析与数值模拟研究[J]. 暴雨灾害, 2018, 37(4): 311-318.
[12] 竹利,陈朝平,陈茂强,廖文超. 川北飑线成熟阶段灾害性大风成因个例分析[J]. 暴雨灾害, 2018, 37(02): 164-173.
[13] 杨芳园,沈茜,周稀,邹灵宇,段燕楠,潘娅婷,李晓鹏. 云南省一次飑线大风天气过程的中尺度特征分析[J]. 暴雨灾害, 2018, 37(01): 48-56.
[14] 柴东红, 杨晓亮, 吴紫煜, 闫雪瑾,裴宇杰, 李宗涛, 张义军. 京津冀地区雷暴大风天气的统计分析[J]. 暴雨灾害, 2017, 36(03): 193-199.
[15] 马素艳,韩经纬,斯琴,荀学义,张和平. 冷涡背景下呼和浩特市冰雹特征分析[J]. 暴雨灾害, 2016, 35(6): 529-536.
版权所有 © 2011《暴雨灾害》编辑部    鄂ICP备06018784号-3
地址: 湖北省武汉市东湖高新技术开发区金融港二路《暴雨灾害》编辑部
 邮编: 430205 Tel: 027-81804935   E-mail: byzh7939@163.com
技术支持: 北京玛格泰克科技发展有限公司