[an error occurred while processing this directive]
暴雨灾害
       首页|  期刊介绍|  编 委 会|  征稿简则|  期刊订阅|  下载中心|  编辑部公告|  联系我们


暴雨灾害  2020, Vol. 39 Issue (2): 125-135    DOI: 10.3969/j.issn.1004-9045.2020.02.003
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索  |   
基于葵花8号卫星资料的沈阳两次暴雨过程中对流云特征对比分析
杨磊1,2, 才奎志2, 孙丽3, 陈宇2, 张岳4
1. 中国气象局沈阳大气环境研究所, 沈阳 110166;
2. 辽宁省气象灾害监测预警中心, 沈阳 110166;
3. 辽宁省人工影响天气办公室, 沈阳 110166;
4. 中国气象局科技与气候变化司, 北京 100081
Comparison of convective cloud characteristics during two torrential rain events in Shenyang based on Himawari-8 satellite data
YANG Lei1,2, CAI Kuizhi2, SUN Li3, CHEN Yu2, ZHANG Yue4
1. Institute of Atmospheric Environment, China Meteorological Administration, Shenyang 110166;
2. Liaoning Meteorological Disaster Monitoring and Early Warning Centre, Shenyang 110166;
3. Liaoning Weather Modification Office, Shenyang 110166;
4. Science and Technology & Climate Change Department, China Meteorological Administration, Beijing 100081
 全文: PDF (6219 KB)   HTML ( 输出: BibTeX | EndNote (RIS)      背景资料
摘要 应用葵花8号卫星资料,结合NCEP FNL再分析、GNSS遥感水汽、风廓线雷达、全国智能网格实况融合分析资料,对2017年7月14日和2018年8月7日沈阳两次暴雨过程(分别简称过程Ⅰ和过程Ⅱ)中对流云特征进行了比较分析,重点探讨了对流云的触发维持机制与影响降水特征差异的因素。结果表明:(1)两次过程分别为局地突发暴雨和区域性极端暴雨,沈阳市区暴雨均由两个对流云团引发,对流云团合并使得降水持续。过程Ⅱ云团合并发生在其移动方向的后侧,具有后向传播特征,合并云团沿其长轴方向移动影响沈阳市,使降水时间延长。(2)在降水前至降水初期,过程Ⅰ对流云顶和水汽层顶快速上升且云顶迅速超过水汽层顶,而过程Ⅱ亮温下降缓慢。短时强降水发生前红外和水汽亮温同步快速降至-60℃,可作为提前预判对流云团产生短时强降水的参考指标。10 min雨量大于10 mm的对流云云顶集中分布在红外亮温低于-55℃、亮温差为-5~0℃的范围。(3)两次过程中,沈阳市分别位于东北冷涡后部和副热带高压北缘。过程Ⅰ,探空曲线呈“X”型,CAPE高达2 584 J·kg-1,造成对流云深厚,云底以下干层导致雨滴蒸发,使降水强度减弱,该过程高强度降水仅发生在对流云团合并加强阶段。过程Ⅱ,云底到地面湿层明显,保证了雨滴降至地面,产生相同量级降水的云团的TBB比过程Ⅰ高。(4)强降水发生前,地面风场存在明显辐合,当大气可降水量2 h内跃增8 mm时,站点出现强降水;局地水汽跃增可能是低空西南气流偏南分量增大或偏北冷空气侵入到暖湿空气中所致。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨磊
才奎志
孙丽
陈宇
张岳
关键词暴雨   对流云   触发机制   大气可降水量   葵花8号卫星     
Abstract: Using NCEP FNL reanalysis data, GNSS retrieved water vapor, wind profile radar products and the national intelligent grid real-life live fusion analysis data, we have conducted a comparative analysis of the convective cloud characteristics during two torrential rain events occurred in Shenyang on 14 July 2017 (event I) and 7 August 2018 (event II), with focus on the trigger and maintaining mechanism of convective cloud and their difference in affecting precipitation. The results are as follows. (1) The two events are local abrupt heavy rain and regional extreme rainstorm events, respectively. Both torrential rain events that occurred in Shenyang urban areas were induced by two mesoscale convective cloud clusters, whose merging made precipitation continue. During eventⅡ, the merging of cloud clusters occurred on the rear of their moving direction, with back propagating feature. The merged cloud clusters moved along its long axis and affected Shenyang, leading to a long precipitation time. (2) Before and at the initial stage of precipitation, both the convective cloud top and the water vapor layer top rise rapidly and the former exceed the latter quickly during eventⅠ, while during eventⅡ the brightness temperature decreased slowly. Before the short-term heavy precipitation in the two events, the simultaneous and rapid decrease of brightness temperatures to -60 ℃ at the infrared and water vapor channels is used as a reference indicator for the forecast of short-term heavy precipitation in advance. The top of convective cloud that caused 10-minute precipitation being greater than 10 mm concentrated in the areas with infrared brightness temperature below -55 ℃ and the brightness temperature difference between -5 ℃ and 0 ℃. (3) Shenyang is located in the rear of the northeast cold vortex and the north edge of subtropical high during the two events. During eventⅠ, the radiosonde curves show the shape of "X", and CAPE reaches up to 2 584 J·kg-1, which correspond with the formation of deep convective cloud, with precipitation intensity weakening due to the raindrop evaporation caused by the dry layer below the cloud bottom. So, high intensity precipitation is only produced during the consolidation of convective cloud clusters. During eventⅡ, the wet layer from the cloud bottom to the ground is obvious, which made the raindrops fall to the ground without much evaporation. TBB of cloud clusters that producing the same level precipitation is higher than that during the eventⅠ. (4) There is an obvious convergence in the surface wind field before the severe precipitation occurred. When the atmospheric precipitable water vapor increases by 8 mm within 2 hours, severe precipitation was observed at the stations. The jump of local water vapor content may be due to the increase of the southerly component of the low-level southwest airflow or the northerly cold air invading into the warm and wet air.
Key wordstorrential rain   convective cloud   trigger mechanism   PWV   Himawari-8 satellite   
收稿日期: 2019-08-30;
基金资助:国家自然科学基金项目(41705127);中国气象局预报员专项(CMAYBY2017015,CMAYBY2018016,CMAYBY2020026);国家重点研发计划重大专项(2018YFC1507301);气象预报业务关键技术发展专项(YBGJXM20190105);辽宁省自然科学基金项目(20180540086,20180540093,20180551130);气象关键技术集成与应用项目(CMAGJ2015M15);辽宁省气象局气象科研项目(201901)
通讯作者: 才奎志,主要从事短时天气预报预警研究。E-mail:ckz_ivan@163.com     E-mail: ckz_ivan@163.com
作者简介: 杨磊,主要从事短时天气预报预警研究。E-mail:yanglei_nuist@163.com
引用本文:   
杨磊, 才奎志, 孙丽,等 .2020. 基于葵花8号卫星资料的沈阳两次暴雨过程中对流云特征对比分析[J]. 暴雨灾害, 39(2): 125-135.
YANG Lei, CAI Kuizhi, SUN Li, et al .2020. Comparison of convective cloud characteristics during two torrential rain events in Shenyang based on Himawari-8 satellite data[J]. Torrential Rain and Disasters, 39(2): 125-135.
 
没有本文参考文献
[1] 李晓容, 高青云, 付世军. 四川盆地东北部三次持续性暴雨过程水汽输送特征分析[J]. 暴雨灾害, 2020, 39(3): 234-240.
[2] 刘毅, 孙俊, 周国兵, 王欢, 林建. 近45 a重庆暴雨气候变化特征分析[J]. 暴雨灾害, 2020, 39(3): 306-311.
[3] 王艳兰, 伍静, 唐桥义, 王娟, 王军君. 2019年6月桂林三次强降水天气成因对比分析[J]. 暴雨灾害, 2020, 39(2): 136-147.
[4] 周仲岛. 近30 a台湾非台风暴雨研究回顾[J]. 暴雨灾害, 2020, 39(2): 109-116.
[5] 肖云清, 沈新勇, 张晓露, 杨苑媛, 张建荣, 张弛, 李小凡. 贺兰山东麓两次局地暴雨过程的湿位涡诊断分析[J]. 暴雨灾害, 2020, 39(2): 148-157.
[6] 李俊, 杜钧, 许建玉, 王明欢. 一次特大暴雨过程高分辨率集合预报试验的检验和评估[J]. 暴雨灾害, 2020, 39(2): 176-184.
[7] 朱红芳, 王东勇, 杨祖祥, 陶玮. “海葵”台风(1211号)暴雨雨滴谱特征分析[J]. 暴雨灾害, 2020, 39(2): 167-175.
[8] 陈靖, 张容焱, 解以扬, 李培彦, 张长灿, 段丽瑶. 基于城市暴雨内涝数学模型的福州内涝灾害风险评估[J]. 暴雨灾害, 2020, 39(1): 89-95.
[9] 孙佳, 刘晓冉, 程炳岩, 王颖, 柴闯闯, 廖代强, 龙美希, 苏定江. 重庆不同天气系统短历时设计暴雨雨型比较研究[J]. 暴雨灾害, 2020, 39(1): 96-101.
[10] 李易芝, 罗伯良, 彭莉莉, 张超. 2017年6月下旬湖南持续性暴雨动力因子诊断分析[J]. 暴雨灾害, 2020, 39(1): 10-19.
[11] 曾勇, 杨莲梅. 新疆西部“6.16”强降水过程的中尺度分析[J]. 暴雨灾害, 2020, 39(1): 41-51.
[12] 郭姿佑, 伍志方, 蔡景就, 张华龙, 陈晓旸. “18·8”广东季风低压持续性特大暴雨水汽输送特征[J]. 暴雨灾害, 2019, 38(6): 587-596.
[13] 叶朗明, 吴乃庚, 张华龙, 蔡景就, 伍志方. 海陆风和地形对一次弱天气背景下暖区特大暴雨的影响分析[J]. 暴雨灾害, 2019, 38(6): 597-605.
[14] 蔡景就, 伍志方, 陈晓庆, 兰宇, 郭姿佑, 郭春迓. “18·8”广东季风低压持续性特大暴雨成因分析[J]. 暴雨灾害, 2019, 38(6): 576-586.
[15] 丁一汇. 中国暴雨理论的发展历程与重要进展[J]. 暴雨灾害, 2019, 38(5): 395-406.
版权所有 © 2011《暴雨灾害》编辑部
地址: 湖北省武汉市东湖高新技术开发区金融港二路《暴雨灾害》编辑部
 邮编: 430205 Tel: 027-81804935   E-mail: byzh7939@163.com
技术支持: 北京玛格泰克科技发展有限公司