[an error occurred while processing this directive]
暴雨灾害
       首页|  期刊介绍|  编 委 会|  征稿简则|  期刊订阅|  下载中心|  编辑部公告|  联系我们


暴雨灾害  2020, Vol. 39 Issue (2): 136-147    DOI: 10.3969/j.issn.1004-9045.2020.02.004
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索  |   
2019年6月桂林三次强降水天气成因对比分析
王艳兰, 伍静, 唐桥义, 王娟, 王军君
广西桂林市气象局, 桂林 541001
Comparative analysis on the cause of three heavy rainfall events in Guilin in June 2019
WANG Yanlan, WU Jing, TANG Qiaoyi, WANG Juan, WANG Junjun
Guilin Meteorological Office of Guangxi Zhuang Autonomous Region, Guilin 541001
 全文: PDF (12010 KB)   HTML ( 输出: BibTeX | EndNote (RIS)      背景资料
摘要 利用多普勒雷达、气象卫星、自动气象站等监测数据以及NCEP再分析资料,对桂林2019年6月6—12日接连3次强降水天气过程的环流背景、影响系统与形成原因进行了对比分析。结果表明:(1)3次过程按影响系统分属暖区暴雨、低涡暴雨和锋面暴雨过程,均发生在高空急流右侧辐散、低空急流左侧辐合叠加区。(2)3次过程均受500 hPa短波槽和地面中尺度辐合线影响,但第1次过程中西南急流及地形等、第2次过程中低涡切变线、第3次过程中冷锋也起到重要作用。(3)3次过程的触发系统不同,第1次暖区暴雨过程迎风坡地形对其起触发作用,西南急流使得后向传播的对流云带维持;第2次低涡暴雨过程的触发系统为低层位于贵州一带的西南涡,西部冷空气侵入与西南急流加强是低涡对流云团维持较长时间的原因;第3次锋面暴雨的触发系统为冷锋,锋面配合锋前暖湿气流使对流云带加强。(4)第1次过程暖区暴雨MCS模态主要为线状后向扩建类,极端强降水出现在线对流中后端;第2次过程低涡暴雨MCS模态为涡旋类,极端强降水出现在涡旋中心附近;第3次过程锋面暴雨MCS模态由前期后部层云区线状对流转为层状云包裹对流系统,强降水发生在线对流弯曲或中心强回波处。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
王艳兰
伍静
唐桥义
王娟
王军君
关键词强降水   暖区暴雨   低涡暴雨   锋面暴雨   MCS模态     
Abstract: Using the data collected from Doppler weather radar, FY satellite, automatic weather stations and NCEP reanalysis, we have conducted a comparative analysis of the three successive heavy rainfall events occurred in Guilin from June 6 to 12 in 2019 in terms of their circulation background, influence system and cause. The main results are as follow. (1) According to influence system the three events are warm-sector rainstorm, low-vortex rainstorm and frontal rainstorm, respectively, all of which occurred in the superimposed area of the divergence on the right side of upper-level jet and the convergence on the left side of low-level jet. (2) All three events are affected by short-wave troughs at 500 hPa and surface mesoscale convergence lines. In additon, the southwesterly low-level jet and terrain in the first event, the shear line with low vortex in the second event, and the cold front in the third event played an important role, respectively. (3) The trigger systems of the three events are different. The first warm-sector rainstorm event is triggered by windward slope terrain, and the southwest low-level jet maintains the convective clouds which is characterized by backward propagating. The second low-vortex rainstorm event is triggered by the southwest vortex in the low-level in Guizhou area, and in the event the intrusion of western cold air and the reinforcement of southwest low-level jets made the convective cloud with vortex last for a long time. The third frontal rainstorm event is triggered by cold front, which combined with warm and wet airflow in front of the front to strengthen the convective clouds. (4) The patterns of MCS that caused the first warm-sector rainstorm event are mainly the linear backward extension type, and the extremely precipitation occurred in the center and rear part of linear convection echoes. The pattern of MCS that induced the second vortex rainstorm event is the vorticity-stratiform type, and the extremely precipitation occurred near the center of vortex. The pattern of MCS that resulted in the third vortex rainstorm event is the convection system surrounded by stratiform cloud which is changed from linear convection in the rear of stratiform cloud area earlier stage, and the heavy rainfall occurred in the bend of linear convection or the center of strong echo.
Key wordsheavy rainfall   warm-sector rainstorm   low-vortex rainstorm   frontal rainstorm   MCS pattern   
收稿日期: 2019-09-19;
基金资助:广西区气象局科研计划项目(桂气科2016M10);中国气象局预报员专项(CMAYBY2020-096)
作者简介: 王艳兰,主要从事灾害性天气诊断分析与预报方法研究。E-mail:wangyanlangl@163.com
引用本文:   
王艳兰, 伍静, 唐桥义,等 .2020. 2019年6月桂林三次强降水天气成因对比分析[J]. 暴雨灾害, 39(2): 136-147.
WANG Yanlan, WU Jing, TANG Qiaoyi, et al .2020. Comparative analysis on the cause of three heavy rainfall events in Guilin in June 2019[J]. Torrential Rain and Disasters, 39(2): 136-147.
 
没有本文参考文献
[1] 郭英莲, 崔春光, 廖移山. 一次高空云波动诱发的鄂东北强降水特征分析[J]. 暴雨灾害, 2020, 39(3): 213-224.
[2] 张萍萍, 徐双柱, 董良鹏, 张蒙蒙. 一次极端短时强降水过程中FY-3微波湿度计观测特征分析[J]. 暴雨灾害, 2020, 39(3): 300-305.
[3] 陈军, 何为, 杨群, 雷霆, 李小兰, 杜小玲. 低层偏东气流对贵州梵净山东侧强降水的作用[J]. 暴雨灾害, 2020, 39(2): 158-166.
[4] 曾勇, 杨莲梅. 新疆西部“6.16”强降水过程的中尺度分析[J]. 暴雨灾害, 2020, 39(1): 41-51.
[5] 曹萍萍, 康岚, 王佳津, 范江琳, 张琪. 基于ECMWF模式的四川夏季强降水订正试验[J]. 暴雨灾害, 2020, 39(1): 63-70.
[6] 杨春, 张勇, 张亚萍, 余君, 吴胜刚, 李强. 近25 a重庆地区小时降水时空分布特征分析[J]. 暴雨灾害, 2020, 39(1): 71-80.
[7] 叶朗明, 吴乃庚, 张华龙, 蔡景就, 伍志方. 海陆风和地形对一次弱天气背景下暖区特大暴雨的影响分析[J]. 暴雨灾害, 2019, 38(6): 597-605.
[8] 靳振华, 易笑园, 孙晓磊, 刘一玮, 李钢. 天津沿海一次强降水超级单体环境条件及结构分析[J]. 暴雨灾害, 2019, 38(6): 606-614.
[9] 余蓉, 杜牧云, 顾永刚. 锋面短时强降水系统发展模态的环境因子浅析[J]. 暴雨灾害, 2019, 38(6): 640-648.
[10] 陆汉城. 江淮以南地区暴雨和强降水的中尺度天气动力学研究进展[J]. 暴雨灾害, 2019, 38(5): 440-449.
[11] 谌芸, 陈涛, 汪玲瑶, 李晟祺, 徐珺. 中国暖区暴雨的研究进展[J]. 暴雨灾害, 2019, 38(5): 483-493.
[12] 吕劲文, 姚日升, 涂小萍, 申华羽, 方艳莹. 浙江省6—9月午后短时强降水空间分布特征分析[J]. 暴雨灾害, 2019, 38(4): 320-328.
[13] 李明华, 陈芳丽, 姜帅, 甘泉, 林汇丰, 曾丹丹, 李娇娇, 马泽义, 张子凡. “18.8”粤东暴雨中心极端强降水“列车效应”分析[J]. 暴雨灾害, 2019, 38(4): 329-337.
[14] 王婧羽, 李哲, 汪小康, 王晓芳, 崔春光. 河南省雨季短时强降水时空分布特征[J]. 暴雨灾害, 2019, 38(2): 152-160.
[15] 汪小康, 李哲, 杨浩, 王婧羽, 王晓芳. 河南强降水分布特征及其电网灾害风险区划研究[J]. 暴雨灾害, 2018, 37(6): 534-542.
版权所有 © 2011《暴雨灾害》编辑部
地址: 湖北省武汉市东湖高新技术开发区金融港二路《暴雨灾害》编辑部
 邮编: 430205 Tel: 027-81804935   E-mail: byzh7939@163.com
技术支持: 北京玛格泰克科技发展有限公司