[an error occurred while processing this directive]
暴雨灾害
       首页|  期刊介绍|  编 委 会|  征稿简则|  期刊订阅|  下载中心|  编辑部公告|  联系我们


暴雨灾害  2020, Vol. 39 Issue (4): 344-353    DOI: 10.3969/j.issn.1004-9045.2020.04.004
山地暴雨研究 最新目录 | 下期目录 | 过刊浏览 | 高级检索  |   
“7.23”水城特大滑坡事件的降水背景分析
杜小玲1, 彭芳1, 蓝伟2, 张艳梅1, 朱育雷1
1. 贵州省气象台 贵阳 550002;
2. 贵州省气象局, 贵阳 550002
Analysis of precipitation background of “7.23” Shuicheng landslide
DU Xiaoling1, PENG Fang1, LAN Wei2, ZHANG Yanmei1, ZHU Yulei1
1. Meteorological Observatory of Guizhou, Guiyang 550002;
2. Guizhou Meteorological Bureau, Guiyang 550002
 全文: PDF (9568 KB)   HTML ( 输出: BibTeX | EndNote (RIS)      背景资料
摘要 2019年7月23日21时20分贵州省水城县鸡场镇坪地村岔沟组发生特大山体滑坡(简称“7.23”水城特大滑坡),21栋房屋被埋,42人遇难、9人失联。本文利用高空及地面常规观测资料、地面加密观测资料、FY-2G相当黑体亮温(TBB)、NCEP/NCAR FNL格点再分析资料对此次特大滑坡的气象背景进行了诊断分析,得到如下结论:(1)“7.23”水城特大滑坡出现在降水停止后16 h,滑坡前一晚22日夜间降水局地性较强,主要降水时段出现在22日20—23时,距滑坡时间24 h左右。距滑坡点960 m处最大雨强为19.5 mm·h-1(20—21时),距滑坡点2.7 km处最大雨强为56.9 mm·h-1(21—22时)。(2)滑坡前一周当地出现了三场降水,分别为两场大雨及一场暴雨。大雨以上较强降水对100 cm以上土壤体积含水量变化影响大,较强降水使100 cm以上土壤含水量增加迅速,但对100 cm以下的渗透作用微弱。(3)滑坡前一晚22日夜间的降水发生在副热带高压西侧西低东高的背景下,水汽条件充沛并具备一定的不稳定能量条件,但触发抬升能力偏弱。(4)22日20时地面中小尺度低涡的生成激发了分裂后的对流云团的重生和发展,重生后的β中尺度低涡云团在发展最强阶段造成了滑坡点附近的局地强降水,是22日20—23时滑坡点附近降水增强的直接影响系统。(5)22日多个要素分析显示,弱冷空气接近水城时激发了初始对流和降水。弱冷空气维持少动期间,降水在其南侧的暖区一侧加强。(6)较强降水使土壤表层增湿、含水量增加,但仍难以判断降水是滑坡的主要诱因,山坡岩体结构改变、重力与支持力之间的平衡被打破可能才是滑坡的重要原因。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
杜小玲
彭芳
蓝伟
张艳梅
朱育雷
关键词水城特大滑坡   降水   &beta   中尺度对流云团   土壤体积含水量   弱冷空气     
Abstract: A huge landslide occurred in Chagou group, Pingdi village, Jichang Town, Shuicheng County in Guizhou Province (referred to as "7.23" Shuicheng landslide) at 21:20 on 23 July 2019. Houses were buried, 42 people were killed and 9 people were missing. In this study, the conventional observation data, the encrypted observation data, the FY-2G blackbody temperature (TBB) and the NCEP/NCAR FNL grid-ded reanalysis data are used to diagnose and analyze the environmental conditions of this event. Conclusions are as follows. (1) The landslide occurred 16 hours after the precipitation stopped, with the characteristics of precipitation lag. The main precipitation period occurred at 20-23 BT on 22 July. The maximum rain intensity at 960 m away from the landslide point is 19.5 mm·h-1 (20-21 o'clock), and the maximum rain intensity at 2.7 km away from the landslide point is 56.9 mm·h-1 (21-22 BT), which occurred about 24 h before the landslide. (2) There were three rounds of precipitation in the area one week before the landslide, which contributed to the increase of soil water content in the top 100 cm layer, but had weak infiltration effect below 100 cm. (3) The precipitation occurred in the night of 22 July was under the condition of the west-low and east-high on the west side of the subtropical high. Water vapor was abundant and it has some unstable energy. But the abil-ity of triggering uplift was weak. (4) The Meso-β scale convective cloud clusters are the direct influence system of precipitation, which in-creased from 20 to 23 BT on 22 July. The formation of surface Meso-β scale vortex stimulates the regeneration and development of the split convective cloud clusters. (5) The initial convection and precipitation are excited when the weak cold air approachs Shuicheng. The heavy precipitation strengthens on the warm region on the south side of the slow-moving weak cold air mass. (6) The local heavy rain increased the soil soil moisture content, but it is still difficult to judge whether the precipitation is the main cause of the huge landslide. The main cause of the landslide is likely the change of the rock structure of the hillside, which breaks the balance between gravity and supporting force.
Key wordsShuicheng landslide   precipitation   meso-&beta   convective system   soil volume moisture content   weak cold air   
收稿日期: 2020-02-21;
基金资助:中国气象局暴雨创新团队(CMACXTD002-3);气象预报业务关键技术发展专项(YBGJXM(2017)1A-05,YBGJXM(2018)1A-05);贵州省气象局业务发展重大科技专项(ZD[2016]01);西南区域重大科研业务项目(2014-3)
作者简介: 杜小玲,主要从事短期天气预报及暴雨和冻雨研究。E-mail:dxl_jingjing@163.com
引用本文:   
杜小玲, 彭芳, 蓝伟,等 .2020. “7.23”水城特大滑坡事件的降水背景分析[J]. 暴雨灾害, 39(4): 344-353.
DU Xiaoling, PENG Fang, LAN Wei, et al .2020. Analysis of precipitation background of “7.23” Shuicheng landslide[J]. Torrential Rain and Disasters, 39(4): 344-353.
 
没有本文参考文献
[1] 赵琳娜, 姚梦颖, 巩远发, 慕秀香, 李依瞳, 安建宇. 基于贝叶斯模型平均法的“利奇马”台风暴雨预报订正研究[J]. 暴雨灾害, 2020, 39(5): 451-461.
[2] 刘佩廷, 刘敏, 谌伟, 姚丽琼, 方思达. 华中区域年极端小时降水特征分析[J]. 暴雨灾害, 2020, 39(5): 508-515.
[3] 李常德, 王磊, 李晓霞, 李奇三, 常臻, 马真. 基于SPI指数的黄土高原区域旱涝特征分析[J]. 暴雨灾害, 2020, 39(5): 524-531.
[4] 傅云飞, 罗晶, 王东勇, 邱学兴, 周胜男. 夏季江淮地区降水的气候变化研究进展[J]. 暴雨灾害, 2020, 39(4): 317-324.
[5] 于淑婷, 罗亚丽, 李建. 1982—2016年云南省不同强度降水气候态及其变化[J]. 暴雨灾害, 2020, 39(4): 363-371.
[6] 许冠宇, 李琳琳, 田刚, 孟英杰, 牛奔. 国家级降水融合产品在长江流域的适用性评估[J]. 暴雨灾害, 2020, 39(4): 400-408.
[7] 郭英莲, 崔春光, 廖移山. 一次高空云波动诱发的鄂东北强降水特征分析[J]. 暴雨灾害, 2020, 39(3): 213-224.
[8] 曲学斌, 付亚男, 袁秀芝, 谢晓丽, 白明. GPM-IMERG日降水数据在内蒙古地区的适用性分析[J]. 暴雨灾害, 2020, 39(3): 293-299.
[9] 李显风, 张玮, 黄少平, 邓卫华, 周雪莹. 江西省气象-水文-雷达小时雨量信息融合试验结果分析[J]. 暴雨灾害, 2020, 39(3): 276-284.
[10] 张萍萍, 徐双柱, 董良鹏, 张蒙蒙. 一次极端短时强降水过程中FY-3微波湿度计观测特征分析[J]. 暴雨灾害, 2020, 39(3): 300-305.
[11] 王艳兰, 伍静, 唐桥义, 王娟, 王军君. 2019年6月桂林三次强降水天气成因对比分析[J]. 暴雨灾害, 2020, 39(2): 136-147.
[12] 杨磊, 才奎志, 孙丽, 陈宇, 张岳. 基于葵花8号卫星资料的沈阳两次暴雨过程中对流云特征对比分析[J]. 暴雨灾害, 2020, 39(2): 125-135.
[13] 陈军, 何为, 杨群, 雷霆, 李小兰, 杜小玲. 低层偏东气流对贵州梵净山东侧强降水的作用[J]. 暴雨灾害, 2020, 39(2): 158-166.
[14] 彭莉莉, 邓剑波, 谢傲. 基于梯度观测小时数据的南岳山降水日变化特征[J]. 暴雨灾害, 2020, 39(2): 201-206.
[15] 曾琦, 任国玉. 湖北省主要山系高影响天气指标空间特征分析与建模[J]. 暴雨灾害, 2020, 39(2): 192-200.
版权所有 © 2011《暴雨灾害》编辑部
地址: 湖北省武汉市东湖高新技术开发区金融港二路《暴雨灾害》编辑部
 邮编: 430205 Tel: 027-81804935   E-mail: byzh7939@163.com
技术支持: 北京玛格泰克科技发展有限公司