[an error occurred while processing this directive]
暴雨灾害
       首页|  期刊介绍|  编 委 会|  征稿简则|  期刊订阅|  下载中心|  编辑部公告|  联系我们


暴雨灾害  2020, Vol. 39 Issue (4): 354-362    DOI: 10.3969/j.issn.1004-9045.2020.04.005
山地暴雨研究 最新目录 | 下期目录 | 过刊浏览 | 高级检索  |   
暴雨前后山地与平原的大气垂直结构特征对比分析
余洋, 万蓉, 张文刚, 周文
中国气象局武汉暴雨研究所 暴雨监测预警湖北省重点实验室, 武汉 430074
Comparative analysis of atmospheric vertical structure before and after heavy rainfall in mountain and plain
YU Yang, WAN Rong, ZHANG Wengang, ZHOU Wen
Hubei Key Laboratory for Heavy Rain Monitoring and Warning Research, Institute of Heavy Rain, China Meteorological Administration, Wuhan 430205
 全文: PDF (6427 KB)   HTML ( 输出: BibTeX | EndNote (RIS)      背景资料
摘要 利用神农架机场站2016年6月23日11时—24日08时(北京时,下同)和咸宁站2016年7月3日04时—4日01时两次暴雨过程的地面小时降水数据及同址微波辐射计观测数据反演的地面至10 km高度共58层的水汽密度、液态水含量、相对湿度和温度廓线,以及站点水汽总量、液态水总量、云底高度等资料,得到两次暴雨过程中,位于山地的神农架与位于平原的咸宁的暴雨前后大气垂直结构差异。神农架水汽总量、液态水总量均低于咸宁,测站上空各高度的水汽密度、液态水含量、温度也低于咸宁对应高度的数值,混合层的相对湿度略大于咸宁。多要素综合分析认为:(1)神农架处于山地,外来水汽供应不够充分,降水的形成主要依靠本地水汽凝结产生;由于山地海拔较高,神农架大气层结温度相对较低,冰晶效应的温湿条件较咸宁好,冰晶效应使得神农架在水汽供应不够充足的情况下产生暴雨。(2)咸宁水汽供应充足,水汽凝结之后可以得到及时补充;咸宁尽管混合层的湿度条件不如神农架,冰晶的凝结增长相对较弱,但混合层的凇附过程和融化层的云雨滴碰并都在降水过程中起到重要作用。(3)降水开始前神农架的大气抬升作用比咸宁的强,地形对气流的阻挡抬升作用明显,而降水开始后咸宁的大气抬升作用更显著,表现出明显的对流性特征。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
余洋
万蓉
张文刚
周文
关键词山地   平原   暴雨   大气垂直结构     
Abstract: Two heavy rainfall events are analyzed based on the hourly rainfall data at Shennongjia airport meteorological station from 11:00 BT on 23 June to 08:00 BT on 24 June 2016 and Xianning meteorological station from 04:00 on July 3 to 01:00 on July 4, 2016, vertical profiles of water vapor density, liquid water, relative humidity and temperature with high resolution from ground to 10 km, and integrated water vapor, path-integrated cloud liquid water and cloud base data,. The differences of atmospheric vertical structure between Shennongjia in mountainous area and Xianning in plain before and after the rainstorm are obvious. The precipitable water and path-integrated cloud liquid water in Shennongjia are lower than those in Xiannin. The water vapor density, liquid water content and temperature at all altitudes above Shennongjia airport meteorological station are also lower than thoae at the corresponding altitudes above Xianning. The relative humidity in the mixing layer at Shennongjia is slightly higher than that at Xianning. Shennongjia is located in the mountainous area, where the external water vapor supply is not sufficient, and the formation of precipitation mainly depends on the condensation of local water vapor. Due to the high elevation of the mountainous area, the atmospheric temperature in Shennongjia is relatively low, and the temperature and humidity conditions are better for ice nucleation and growth than those in Xianning, which makes Shennongjia produce rainstorm even when the water vapor supply is insufficient. Xianning has sufficient water vapor supply, which can be replenished in time after condensation. Although the humidity condition in the mixing layer in Xianning is not as good as that in Shennongjia, and the growth of ice crystals is relatively weak, the process of riming process in the mixing layer and the coagulation of cloud and rain drops in the melting layer play important roles in the precipitation process. Before the onset of precipitation, because of the topographic effect, air lifting at Shennongjia is stronger than that in Xianning, while the atmospheric uplift in Xianning was more significant after the precipitation begans, showing obvious convective characteristics.
Key wordsmountainous terrain   plain   heavy rainfall   vertical structure of the atmosphere   
收稿日期: 2020-03-10;
基金资助:国家重点研发专项(2018YFC1507201)“西部山地突发性暴雨形成机理及预报理论方法研究”
通讯作者: 万蓉,主要从事暴雨综合观测技术研究。E-mail:wanrong@whihr.com.cn   
作者简介: 余洋,主要从事暴雨综合观测技术研究。E-mail:995072993@qq.com
引用本文:   
余洋, 万蓉, 张文刚,等 .2020. 暴雨前后山地与平原的大气垂直结构特征对比分析[J]. 暴雨灾害, 39(4): 354-362.
YU Yang, WAN Rong, ZHANG Wengang, et al .2020. Comparative analysis of atmospheric vertical structure before and after heavy rainfall in mountain and plain[J]. Torrential Rain and Disasters, 39(4): 354-362.
 
没有本文参考文献
[1] 洪国平. 区域性暴雨过程评价指标在湖北的本地化修订与应用[J]. 暴雨灾害, 2020, 39(5): 470-476.
[2] 赵琳娜, 姚梦颖, 巩远发, 慕秀香, 李依瞳, 安建宇. 基于贝叶斯模型平均法的“利奇马”台风暴雨预报订正研究[J]. 暴雨灾害, 2020, 39(5): 451-461.
[3] 熊洁, 赵军, 赖安伟, 曹小群, 周志敏, 康兆萍. YHGS模式产品在华中一次暴雨预报应用的评估[J]. 暴雨灾害, 2020, 39(5): 462-469.
[4] 闵爱荣, 廖移山, 邓雯, 张翠荣. 2019年4—10月我国主要暴雨天气过程简述[J]. 暴雨灾害, 2020, 39(5): 539-548.
[5] 成丹, 陈翠珍, 陈正洪, 刘静, 方怡. 武汉市暴雨的雨峰和历时及其排水防涝的分析[J]. 暴雨灾害, 2020, 39(5): 532-538.
[6] 黄楚惠, 李国平, 张芳丽, 高珩洲, 王铭杨, 郭善云. 近10 a气候变化影响下四川山地暴雨事件的演变特征[J]. 暴雨灾害, 2020, 39(4): 335-343.
[7] 吴志鹏, 周国兵, 张亚萍, 刘德, 何军. 基于风暴尺度模式产品的暴雨最优升尺度概率预报方法研究[J]. 暴雨灾害, 2020, 39(4): 372-381.
[8] 李晓容, 高青云, 付世军. 四川盆地东北部三次持续性暴雨过程水汽输送特征分析[J]. 暴雨灾害, 2020, 39(3): 234-240.
[9] 刘毅, 孙俊, 周国兵, 王欢, 林建. 近45 a重庆暴雨气候变化特征分析[J]. 暴雨灾害, 2020, 39(3): 306-311.
[10] 周仲岛. 近30 a台湾非台风暴雨研究回顾[J]. 暴雨灾害, 2020, 39(2): 109-116.
[11] 王艳兰, 伍静, 唐桥义, 王娟, 王军君. 2019年6月桂林三次强降水天气成因对比分析[J]. 暴雨灾害, 2020, 39(2): 136-147.
[12] 杨磊, 才奎志, 孙丽, 陈宇, 张岳. 基于葵花8号卫星资料的沈阳两次暴雨过程中对流云特征对比分析[J]. 暴雨灾害, 2020, 39(2): 125-135.
[13] 肖云清, 沈新勇, 张晓露, 杨苑媛, 张建荣, 张弛, 李小凡. 贺兰山东麓两次局地暴雨过程的湿位涡诊断分析[J]. 暴雨灾害, 2020, 39(2): 148-157.
[14] 李俊, 杜钧, 许建玉, 王明欢. 一次特大暴雨过程高分辨率集合预报试验的检验和评估[J]. 暴雨灾害, 2020, 39(2): 176-184.
[15] 朱红芳, 王东勇, 杨祖祥, 陶玮. “海葵”台风(1211号)暴雨雨滴谱特征分析[J]. 暴雨灾害, 2020, 39(2): 167-175.
版权所有 © 2011《暴雨灾害》编辑部    鄂ICP备06018784号-3
地址: 湖北省武汉市东湖高新技术开发区金融港二路《暴雨灾害》编辑部
 邮编: 430205 Tel: 027-81804935   E-mail: byzh7939@163.com
技术支持: 北京玛格泰克科技发展有限公司