[an error occurred while processing this directive]
暴雨灾害
       首页|  期刊介绍|  编 委 会|  征稿简则|  期刊订阅|  下载中心|  编辑部公告|  联系我们


暴雨灾害  2020, Vol. 39 Issue (5): 442-450    DOI: 10.3969/j.issn.1004-9045.2020.05.002
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索  |   
青藏高原东侧甘孜云雷达观测的非降水云垂直结构特征分析
万霞1, 徐桂荣1, 万蓉1, 王斌1, 任靖1, 罗成2
1. 暴雨监测预警湖北省重点实验室 中国气象局武汉暴雨研究所, 武汉 430205;
2. 四川省甘孜县气象局, 甘孜 626799
Vertical structure of non-precipitation cloud obtained from cloud radar observation at Ganzi in the eastern Qinghai-Tibet Plateau
WAN Xia1, XU Guirong1, WAN Rong1, WANG Bin1, REN Jing1, LUO Cheng2
1. Hubei Key Laboratory for Heavy Rain Monitoring and Warning Research, Institute of Heavy Rain, Wuhan 430205;
2. Sichuan Province Ganzi Meteorological Service, Ganzi 626799
 全文: PDF (7071 KB)   HTML ( 输出: BibTeX | EndNote (RIS)      背景资料
摘要 利用青藏高原东侧甘孜站Ka波段云雷达2019年6—8月观测资料,对该地区非降水云垂直结构特征进行了分析。结果表明:(1)甘孜非降水云中单层云的出现率为78.3%,高于两层云的出现率18.3%和多层云的出现率3.4%。分不同高度云来看,低云的出现率为46%,中云和高云各占27%,当云层数增加时,中云和高云的出现率增加。(2)云的出现率具有白天小、夜间大的日变化特征,云层数增多后,上层云出现率的日变化特征减弱;地形对云出现率的日变化有一定影响。(3)云底高和云顶高的垂直分布结构多为双峰形态,当出现三层云时,下层云的垂直结构为单峰形态。(4)甘孜云厚呈现出云压缩现象:单层云的平均云厚约为3.8 km;两层云的下层云平均云厚约为2.5 km,上层云平均云厚约为1.5 km;三层云的下层云平均云厚减小至约1.8 km,上层云平均云厚减小至约1.2 km,中层云平均云厚最小,约为1 km;云压缩现象随云层数增加而愈发明显。地基云雷达展示了局地云探测的优势,有益于高原云探测和研究。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
万霞
徐桂荣
万蓉
王斌
任靖
罗成
关键词青藏高原   毫米波云雷达   云出现率   云垂直结构     
Abstract: Based on the observation data of Ka-band cloud radar at Ganzi site in the eastern Qinghai-Tibet Plateau (QTP) from June to August 2019, the vertical structure of non-precipitation cloud in this area is analyzed. The results show that: (1) The cloud occurrence frequency (COF) of single-layer cloud is 78.3%, which is higher than 18.3% of two-layer cloud and 3.4% of multi-layer cloud under the cloudy condition. For clouds with different height, the COF of low cloud is 46%, while middle and high clouds account for 27% each. When the number of cloud layers increases, the COFs of middle and high clouds increase. (2) The COF presents a diurnal variation, in which it is low in daytime and high in nighttime. However, the COF diurnal variation of upper layer clouds weakens, when the number of cloud layers increases. Additionally, terrain has a certain impact on the COF diurnal variation. (3) The vertical distributions of cloud base height (CBH) and cloud top height (CTH) are mostly bimodal. When three-layer cloud happens, the vertical distributions of CBH and CTH are unimodal for the lower layer cloud. (4) The cloud thickness shows the phenomenon of cloud compression. Namely, for single-layer cloud, the average cloud thickness is about 3.8 km. For two-layer cloud, the average cloud thickness of lower layer cloud is about 2.5 km, and that of upper layer cloud is about 1.5 km. For three-layer cloud, the average cloud thickness of lower and upper layer clouds decrease to about 1.8 and 1.2 km, respectively, and the average cloud thickness of middle layer cloud is the smallest, with a value about 1 km. The phenomenon of cloud compression becomes more obvious with the increase of cloud layers. These results indicate that ground-based cloud radar shows the advantages of local cloud detection, which is beneficial to cloud detection and research over the QTP.
Key wordsQinghai-Tibet Plateau   millimeter-wave cloud radar   cloud occurrence frequency   cloud vertical structure   
收稿日期: 2020-04-28;
基金资助:国家自然科学基金高原专项重点项目(91637211);湖北省气象局科技发展基金项目(2015Q10)
通讯作者: 徐桂荣,主要从事大气探测研究。E-mail:grxu@whihr.com.cn   
作者简介: 万霞,主要从事云雷达探测研究。E-mail:wanxia2007@126.com
引用本文:   
万霞, 徐桂荣, 万蓉,等 .2020. 青藏高原东侧甘孜云雷达观测的非降水云垂直结构特征分析[J]. 暴雨灾害, 39(5): 442-450.
WAN Xia, XU Guirong, WAN Rong, et al .2020. Vertical structure of non-precipitation cloud obtained from cloud radar observation at Ganzi in the eastern Qinghai-Tibet Plateau[J]. Torrential Rain and Disasters, 39(5): 442-450.
 
没有本文参考文献
[1] 徐桂荣, 张文刚, 万霞, 王斌, 冷亮, 周伶俐, 万蓉. 地基微波辐射计反演的青藏高原东侧甘孜大气温湿廓线分析[J]. 暴雨灾害, 2019, 38(3): 238-248.
[2] 黄一航,陈权亮,汪正林,张娟. 1979—2016年青藏高原低涡的变化特征研究[J]. 暴雨灾害, 2018, 37(02): 97-104.
[3] 徐桂荣,乐新安,张文刚,万霞,冯光柳. COSMIC 掩星资料反演青藏高原大气廓线与 探空观测的对比分析[J]. 暴雨灾害, 2016, 35(4): 315-.
[4] 徐桂荣;崔春光;. 青藏高原东部及下游关键区大气边界层高度的观测分析[J]. 暴雨灾害, 2009, 28(02): 18-24.
版权所有 © 2011《暴雨灾害》编辑部
地址: 湖北省武汉市东湖高新技术开发区金融港二路《暴雨灾害》编辑部
 邮编: 430205 Tel: 027-81804935   E-mail: byzh7939@163.com
技术支持: 北京玛格泰克科技发展有限公司