[an error occurred while processing this directive]
暴雨灾害
       首页|  期刊介绍|  编 委 会|  征稿简则|  期刊订阅|  下载中心|  编辑部公告|  联系我们


暴雨灾害  2020, Vol. 39 Issue (5): 532-538    DOI: 10.3969/j.issn.1004-9045.2020.05.012
短论 最新目录 | 下期目录 | 过刊浏览 | 高级检索  |   
武汉市暴雨的雨峰和历时及其排水防涝的分析
成丹1, 陈翠珍2, 陈正洪1, 刘静1, 方怡1
1. 湖北省气象服务中心, 武汉 430205;
2. 武汉市水务科学研究院, 武汉 430014
Analysis of rainfall peak and duration of rainstorm for drainage and waterlogging prevention in Wuhan
CHENG Dan1, CHEN Cuizhen2, CHEN Zhenghong1, LIU Jing1, FANG Yi1
1. Hubei Meteorological Service Center, Wuhan 430205;
2. Wuhan Institute of Water Science, Wuhan 430014
 全文: PDF (2679 KB)   HTML ( 输出: BibTeX | EndNote (RIS)      背景资料
摘要 基于1980—2018年武汉国家基本气象观测站逐分钟降雨数据,分别利用同频率分析法和Huff雨型分析法确定武汉主城区历时1 440 min设计暴雨雨型,并采用InfoWorks ICM水力模型软件对雨水管网进行模拟计算,分析两种设计暴雨雨型的雨峰、降雨量时间分布和积水情况,研究结果表明:(1)基于同频率分析法和Huff雨型分析法确定的武汉主城区历时1 440 min设计暴雨雨型均为单峰型,两者雨峰位置均略微超前整场降雨过程的前2/3分位,在降雨时程的60%~70%阶段,前者降雨强度迅速增加,大于后者。(2)在同频率分析法确定的武汉主城区历时1 440 min设计暴雨雨型下,武汉汉口中心城区的淹没面积均大于Huff雨型分析法的确定结果,且水深、流量、流速等峰值均较大。(3)同频率分析法确定的设计暴雨雨型结果使得武汉主城区系统内达标管网比例更低,积水情况更严重。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
成丹
陈翠珍
陈正洪
刘静
方怡
关键词设计暴雨雨型   雨峰   同频率分析法   积水深度   排水防涝     
Abstract: In this study, the minute-level rainfall data at Wuhan National Basic Meteorological Observing Stations from 1980 to 2018 are used to ascertain the design storm hyetograph of 1 440 min for the main urban area of Wuhan by the homogenous frequency analysis method and the Huff hyetograph analysis method, respectively. The results about rain peak, time distribution of rainfall and ponding water in the calculation and simulation of rainwater pipe network by hydraulic model software named InfoWorks ICM will be discussed. Results show that: (1) The design storm hyetographs of 1 440 min for the main urban area of Wuhan present single-peak pattern uniformly on the base of the homogenous frequency analysis method and the Huff hyetograph analysis method. Both rain peak positions are slightly ahead of the top 2/3 quintile of the entire rainfall event, while in the stage of 60% to 70%, the rainfall intensity of the former increases rapidly, which is greater than the latter. (2) Under the design storm hyetograph of 1 440 min for the main urban area of Wuhan by the homogenous frequency analysis method, the submerged area of the main urban area of Hankou is larger than that by the Huff hyetograph analysis method, so are the peak values of water depth, flow and velocity. (3) For the main urban area of Wuhan, the proportion of standard pipe network in the system is lower and the water accumulation is more serious when under the design storm hyetograph by the homogenous frequency analysis method.
Key wordsdesign storm hyetograph   rain peak   homogenous frequency analysis method   accumulated water depth   drainage and waterlogging prevention   
收稿日期: 2019-07-24;
基金资助:湖北省气象局科技基金项目(2019Q09);湖北省气象局科技基金项目(2018Q12)
作者简介: 成丹,主要从事专业气象服务研究。E-mail:chengdan19880423@126.com
引用本文:   
成丹, 陈翠珍, 陈正洪,等 .2020. 武汉市暴雨的雨峰和历时及其排水防涝的分析[J]. 暴雨灾害, 39(5): 532-538.
CHENG Dan, CHEN Cuizhen, CHEN Zhenghong, et al .2020. Analysis of rainfall peak and duration of rainstorm for drainage and waterlogging prevention in Wuhan[J]. Torrential Rain and Disasters, 39(5): 532-538.
 
没有本文参考文献
[1] 孙佳, 刘晓冉, 程炳岩, 王颖, 柴闯闯, 廖代强, 龙美希, 苏定江. 重庆不同天气系统短历时设计暴雨雨型比较研究[J]. 暴雨灾害, 2020, 39(1): 96-101.
[2] 王光明,廖玉芳,曾向红,吴 浩,王文闻. 湖南短历时暴雨雨型分析[J]. 暴雨灾害, 2017, 36(1): 86-90.
[3] 朱玲,龚强,李杨,顾正强,蔺娜,晁华,徐红,李倩. 辽宁葫芦岛市新旧暴雨强度公式对比及暴雨雨型分析[J]. 暴雨灾害, 2017, 36(03): 251-258.
[4] 马京津, 宋丽莉, 张晓婧. 对两种不同取样方法Pilgrim & Cordery设计雨型的比较研究[J]. 暴雨灾害, 2016, 35(3): 220-226.
[5] 成丹,陈正洪,方怡. 宜昌市区短历时暴雨雨型特征[J]. 暴雨灾害, 2015, 34(3): 249-.
版权所有 © 2011《暴雨灾害》编辑部
地址: 湖北省武汉市东湖高新技术开发区金融港二路《暴雨灾害》编辑部
 邮编: 430205 Tel: 027-81804935   E-mail: byzh7939@163.com
技术支持: 北京玛格泰克科技发展有限公司