[an error occurred while processing this directive]
暴雨灾害
       首页|  期刊介绍|  编 委 会|  征稿简则|  期刊订阅|  下载中心|  编辑部公告|  联系我们


暴雨灾害  2020, Vol. 39 Issue (6): 564-570    DOI: 10.3969/j.issn.1004-9045.2020.06.003
“2020年梅汛期降水研究”专刊 最新目录 | 下期目录 | 过刊浏览 | 高级检索  |   
2020年安徽梅雨异常特征及预测前兆信号分析
田红, 程智, 谢五三, 戴娟
安徽省气候中心, 合肥 230031
Analysis on the characteristics of Meiyu anomaly and prediction precursor signal in Anhui Province in 2020
TIAN Hong, CHENG Zhi, XIE Wusan, DAI Juan
Anhui Climate Center, Hefei 230031
 全文: PDF (2843 KB)   HTML ( 输出: BibTeX | EndNote (RIS)      背景资料
摘要 基于安徽省气象台站降水资料和NCEP再分析数据,分析了2020年安徽梅雨气候异常特征及其成因,评估了汛期预测效果及其预测前兆信号的有效性。结果表明:(1)2020年安徽6月2日入梅,8月1日出梅,梅雨期长度为60 d,梅雨量沿江江南1 057 mm,江淮之间810 mm,多地降水强度创历史极值。综合来看,梅雨期之长、覆盖范围之广、累计雨量之大、梅雨强度之强,均为1961年以来第一位。(2)梅雨异常偏多的主要原因是6—7月乌拉尔山、东西伯利亚-鄂霍茨克海附近阻塞高压活跃,东亚沿海500 hPa位势高度距平场上EAP波列的形势明显,夏季风偏弱,西太平洋副热带高压(副高)异常偏强偏西偏南,有利于冷暖空气在安徽交汇,副高西侧向安徽省的水汽输送异常偏强,水汽辐合明显;梅雨期偏长的原因是副高脊线6月偏北、7月偏南,导致入梅偏早、出梅偏迟。(3)前期冬春季赤道中太平洋出现一次弱厄尔尼诺事件,虽然其对安徽梅雨指示意义不清晰,但响应信号印度洋海温和副高异常偏暖偏强。历史统计发现,符合这一特征的年份中,前冬赤道中东太平洋基本均为厄尔尼诺状态,这些年份安徽梅雨偏多的概率很大。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
田红
程智
谢五三
戴娟
关键词梅雨   气候预测   印度洋海温   西太平洋副热带高压   厄尔尼诺     
Abstract: Based on precipitation data at Anhui meteorological stations and NCEP reanalysis data, in this paper we analyze the characteristics and the causes of Meiyu climate anomaly in Anhui Province in 2020, and evaluate the skill of climate prediction and the effectiveness of prediction precursor signals. The main conclusions are as following. (1) In Anhui Province, Meiyu onset date was June 2 and outset date was August 1. Meiyu duration was 60 days. Meiyu precipitation was 1 057 mm in South along the Yangtze River and 810 mm between Yangtze River and Huaihe Rive, and the rainfall intensity in many places reached the historical extreme value in 2020. On the whole, the length of Meiyu period, the wide coverage, the large amount of accumulated rainfall and the intensity of Meiyu reached the top level since 1961. (2) The main reason for the abnormal Meiyu is that the blocking high is active near the Ural Mountain and the East Siberian-Okhotsk Sea from June to July. The EAP wave train on the 500 hPa geopotential height anomaly field along the East Asian coast is obvious. The summer monsoon is weak. The Western Pacific Subtropical High is abnormally strong and located too far to west and south, which is conducive to the convergence of cold and warm air in Anhui Province. The water vapor transport from the west side of the subtropical high to the province is extremely strong. The reason for the longer Meiyu period is that the ridge line of subtropical high is northward in June and southward in July, which leads to the early onset and late demise of Meiyu. (3) In the previous winter and spring, there was a weak El Niño event in the equatorial central Pacific Ocean. Although the indication of ist influence on Meiyu in Anhui Province is not clear, the response signal is that the Indian Ocean SST and subtropical high are abnormally warm and strong. According to historical statistics, if the equatorial Middle East Pacific Ocean is basically in El Niño state in previous winter, the probability of more intensive Meiyu in these years is very high. Therefore, the Indian Ocean SST and Western Pacific Subtropical High response factors can be used as the starting points to improve the prediction ability of Meiyu in weak El Niño years.
Key wordsMeiyu   climate prediction   India ocean sea temperature   Western Pacific Subtropical High   El Niñ   o   
收稿日期: 2020-10-31;
基金资助:安徽省自然科学基金(1908085MD109);气象预报业务关键技术发展专项子项目(YBGJXM20206A-02);安徽省气象局科研项目KM201903)
通讯作者: 程智,主要从事短期气候预测。E-mail:alexclimate@163.com   
作者简介: 田红,主要从事气候业务及服务。E-mail:Linda2383@163.com
引用本文:   
田红, 程智, 谢五三,等 .2020. 2020年安徽梅雨异常特征及预测前兆信号分析[J]. 暴雨灾害, 39(6): 564-570.
TIAN Hong, CHENG Zhi, XIE Wusan, et al .2020. Analysis on the characteristics of Meiyu anomaly and prediction precursor signal in Anhui Province in 2020[J]. Torrential Rain and Disasters, 39(6): 564-570.
 
没有本文参考文献
[1] 杨梦兮, 刘梅, 柯丹, 陈圣劼. 2020年江淮地区梅雨异常的成因分析[J]. 暴雨灾害, 2020, 39(6): 555-563.
[2] 王永光, 娄德君, 刘芸芸. 2020年长江中下游梅汛期降水异常特征及其成因分析[J]. 暴雨灾害, 2020, 39(6): 549-554.
[3] 肖莺, 杜良敏, 高雅琦. 2020年湖北梅雨异常特征及成因分析[J]. 暴雨灾害, 2020, 39(6): 571-577.
[4] 信飞, 马悦, 王蔚, 王超. 2020年上海梅雨异常特征及延伸期预报分析[J]. 暴雨灾害, 2020, 39(6): 578-585.
[5] 贺晓露, 汪小康, 郝元甲, 秦幼文, 杨涛, 李格. 复杂地形影响下鄂东北梅雨锋大暴雨MCS的触发和演变[J]. 暴雨灾害, 2020, 39(6): 611-619.
[6] 蔡芗宁, 宗志平, 马杰, 李勇, 张博, 尹姗, 梅双丽. 2020年梅雨特征分析及模式中期预报性能检验[J]. 暴雨灾害, 2020, 39(6): 629-636.
[7] 李祥, 张立凤, 王敬囝. 梅雨锋暴雨预报对分辨率与积云参数化的敏感性[J]. 暴雨灾害, 2020, 39(6): 637-646.
[8] 傅新姝, 顾问, 彭杰, 麻炳欣, 郭巍, 王晓峰, 岳彩军, 张燕燕, 薛昊. 2020年梅雨期上海一次强降水过程垂直结构的综合观测分析[J]. 暴雨灾害, 2020, 39(6): 658-665.
[9] 周仲岛. 近30 a台湾非台风暴雨研究回顾[J]. 暴雨灾害, 2020, 39(2): 109-116.
[10] 周辰光, 杜良敏, 高伟, 郭广芬. CFSv2在湖北省梅雨特征量延伸期预报中的应用[J]. 暴雨灾害, 2020, 39(2): 185-191.
[11] 赵晓琳, 牛若芸. 2016年和1998年夏季长江中下游持续性强降雨及大气环流特征异同[J]. 暴雨灾害, 2019, 38(6): 615-623.
[12] 崔春光, 胡伯威, 王晓芳, 李山山, 周文. 相当正压切变型梅雨锋暴雨研究进展[J]. 暴雨灾害, 2019, 38(5): 541-553.
[13] 聂云, 周继先, 顾欣, 周艳, 杜小玲. “6.18”梅雨锋西段黔东南大暴雨个例诊断分析[J]. 暴雨灾害, 2018, 37(5): 445-454.
[14] 徐双柱,陈静静,王青霞. 南岳山、庐山高山站风场对长江流域梅雨锋暴雨的指示作用[J]. 暴雨灾害, 2018, 37(3): 213-218.
[15] 魏葳,蒋丽,陈晓伟,蔡磊,唐娟. 2015年皖江最强梅雨锋短时强降水过程成因分析[J]. 暴雨灾害, 2017, 36(1): 66-74.
版权所有 © 2011《暴雨灾害》编辑部    鄂ICP备06018784号-3
地址: 湖北省武汉市东湖高新技术开发区金融港二路《暴雨灾害》编辑部
 邮编: 430205 Tel: 027-81804935   E-mail: byzh7939@163.com
技术支持: 北京玛格泰克科技发展有限公司