[an error occurred while processing this directive]
暴雨灾害
       首页|  期刊介绍|  编 委 会|  征稿简则|  期刊订阅|  下载中心|  编辑部公告|  联系我们


暴雨灾害  2021, Vol. 40 Issue (2): 125-135    DOI: 10.3969/j.issn.1004-9045.2021.02.003
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索  |   
梵净山东南侧夏季暖区暴雨中尺度系统演变与环境场特征个例分析
聂云1, 周继先1, 杨帆2, 杨群1, 杜小玲2
1. 贵州省铜仁市气象局, 铜仁 554300;
2. 贵州省气象台, 贵阳 550002
Analysis on mesoscale system evolution and environmental field characteristics of a warm-sector heavy rainfall event in summer in the southeast of Fanjing Mountains
NIE Yun1, ZHOU Jixian1, YANG Fan2, YANG Qun1, DU Xiaoling2
1. Tongren Meteorological Office of Guizhou Province, Tongren 554300;
2. Guizhou Meteorological Observatory, Guiyang 550002
 全文: PDF (7380 KB)   HTML ( 输出: BibTeX | EndNote (RIS)      背景资料
摘要 利用常规气象观测资料、卫星云图、多普勒天气雷达资料、区域自动气象站资料与NECP/NCAR 1°×1°逐6 h全球再分析资料,对2016年7月3—4日梵净山东南侧暖区特大暴雨的中尺度系统演变与环境场特征进行了分析。结果表明:(1)该过程暴雨发生在副热带高压西北侧高空槽区、低层暖切变南侧、低空急流左前端及高空200 hPa分流辐散区,主要影响系统为500 hPa高空槽和850 hPa暖切变线,地面无明显冷空气影响,属贵州暖区极端暴雨。(2)此次暖区暴雨是由4个对流云团连续影响直接造成,强降雨出现在对流云团中心附近及其后侧云顶亮温(TBB)等值线梯度大值区。(3)暴雨由积状云为主的混合降水回波造成;暖云层和湿层深厚、低层水汽输送充沛、异常偏低的自由对流高度(LFC)和抬升凝结高度(LCL)及中等强度“瘦高”型对流有效位能分布,是形成高效率降水的有利环境条件。(4)梵净山对水汽向北输送具有阻挡作用,使水汽通量大值带和水汽辐合中心集中在其东南侧;边界层偏东风在山前转向南流与南来偏南气流在暴雨区形成东西向稳定中尺度辐合线,对流在辐合线附近触发、合并、加强和东移是造成特大暴雨的重要原因;迎风坡和喇叭口地形的中小尺度动力强迫有利于边界层水汽输送和抬升凝结。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
作者相关文章
聂云
周继先
杨帆
杨群
杜小玲
关键词暖区暴雨   中尺度对流系统   暖切变线   列车效应   地形作用     
Abstract: Using routine upper-air and surface weather observations, satellite images, Doppler weather radar products, the observations from regional automatic weather stations and NCEP 6-hourly reanalysis data with 1°×1° resolution, we have conducted an analysis of the mesoscale system evolution and environmental field characteristics of a warm-sector heavy rainfall event occurred in the southeast of Fanjing Mountain from July 3 to 4 in 2016. Results are as follows. (1) This event, whose main influencing systems are westerly trough at 500 hPa and warm shear line at 850 hPa, occurred in the upper trough area to the northwest of the subtropical high, the south side of low-level warm shear, the left front of low-level jet and the divergence zone at 200 hPa. As a result, this event is a warm-sector extreme heavy rainfall event in Guizhou without the affecting of obvious cold air in the ground level. (2) This warm-sector heavy rainfall event is directly caused by four continuous convective cloud clusters, in which the severe precipitation occurred near the center of the convective cloud clusters and in the area of big values of TBB gradient at their back side. (3) The heavy rain was caused by the mixed precipitation echoes of cumuliform clouds. Favorable environmental conditions causing such a high efficient precipitation include warm clouds, deep wet layer, low-level abundant water vapor transport, abnormal low level of free convection (LFC) and level of condensation lifting (LCL), and "thin high" distribution of convective effective potential energy with moderate intensity. (4) The zones with great value of water vapor flux and the water vapor convergence centers are concentrated in southeast side of Fanjing Mountain because of the blocking effect of terrain. The easterly wind in the boundary layer turned south in front of the mountain and met the southerly airflow in the rainstorm area, forming an east-west stable mesoscale convergence line. The convections were triggered, merged, strengthened and then moved eastward near the convergence line, which is the important cause for the heavy rain forming. The meso-and micro-scale dynamical forcing by windward slope and the trumpet-shaped topography are favorable to the transport and uplift condensation of water vapor in the boundary layer.
Key wordswarm-sector heavy rainfall   mesoscale convective system   warm shear line   train effect   terrain effect   
收稿日期: 2018-12-10;
基金资助:中国气象局预报业务关键技术发展专项(YBGJXM[2017]1A-05,YBGJXM[2018]1A-05);贵州暴雨外场试验及研究项目(黔气科合ZD2016[01]号);中国气象局预报员专项(CMAYBY2020-116);铜仁市科技支撑计划项目(铜市科研[2020]24号);铜仁市暴雨预报研究团队
通讯作者: 杜小玲,主要从事天气预报及冻雨、暴雨等极端天气研究。E-mail:13985141480@163.com   
作者简介: 聂云,主要从事短期天气预报业务与服务工作。E-mail:476820730@qq.com
引用本文:   
聂云, 周继先, 杨帆,等 .2021. 梵净山东南侧夏季暖区暴雨中尺度系统演变与环境场特征个例分析[J]. 暴雨灾害, 40(2): 125-135.
NIE Yun, ZHOU Jixian, YANG Fan, et al .2021. Analysis on mesoscale system evolution and environmental field characteristics of a warm-sector heavy rainfall event in summer in the southeast of Fanjing Mountains[J]. Torrential Rain and Disasters, 40(2): 125-135.
 
没有本文参考文献
[1] 杨晓亮, 杨敏, 段宇辉, 朱刚, 孙云. 京津冀一次暖区大暴雨的成因分析[J]. 暴雨灾害, 2021, 40(5): 455-465.
[2] 胡燕平, 单铁良, 顾佳佳. 沙颍河流域一次短时极端强降水预报失误剖析[J]. 暴雨灾害, 2021, 40(5): 494-504.
[3] 尉英华, 陈宏, 刘一玮, 林晓萌. 盛夏一次地面冷锋过境引发局地大暴雨的成因分析[J]. 暴雨灾害, 2021, 40(4): 393-400.
[4] 毛紫怡, 刘金卿. 湖南省西南涡暴雨的分类研究[J]. 暴雨灾害, 2021, 40(1): 52-60.
[5] 张夕迪, 沈文强, 杨舒楠, 张恒德, 韩冰. 2020年7月4—10日长江流域极端强降雨过程MCS活动特征分析[J]. 暴雨灾害, 2020, 39(6): 593-602.
[6] 翟丹华, 张亚萍, 朱岩, 黎中菊, 邱鹏, 黎春蕾. 綦江流域一次破记录洪水过程的水文与雷达回波特征分析[J]. 暴雨灾害, 2020, 39(6): 603-610.
[7] 王艳兰, 伍静, 唐桥义, 王娟, 王军君. 2019年6月桂林三次强降水天气成因对比分析[J]. 暴雨灾害, 2020, 39(2): 136-147.
[8] 周仲岛. 近30 a台湾非台风暴雨研究回顾[J]. 暴雨灾害, 2020, 39(2): 109-116.
[9] 曾勇, 杨莲梅. 新疆西部“6.16”强降水过程的中尺度分析[J]. 暴雨灾害, 2020, 39(1): 41-51.
[10] 叶朗明, 吴乃庚, 张华龙, 蔡景就, 伍志方. 海陆风和地形对一次弱天气背景下暖区特大暴雨的影响分析[J]. 暴雨灾害, 2019, 38(6): 597-605.
[11] 余蓉, 杜牧云, 顾永刚. 锋面短时强降水系统发展模态的环境因子浅析[J]. 暴雨灾害, 2019, 38(6): 640-648.
[12] 谌芸, 陈涛, 汪玲瑶, 李晟祺, 徐珺. 中国暖区暴雨的研究进展[J]. 暴雨灾害, 2019, 38(5): 483-493.
[13] 任丽, 孙磊, 张桂华, 白雪梅, 张天华. 一次东北暖锋锋生暴雨的中尺度特征分析及成因初探[J]. 暴雨灾害, 2019, 38(4): 311-319.
[14] 李明华, 陈芳丽, 姜帅, 甘泉, 林汇丰, 曾丹丹, 李娇娇, 马泽义, 张子凡. “18.8”粤东暴雨中心极端强降水“列车效应”分析[J]. 暴雨灾害, 2019, 38(4): 329-337.
[15] 姚晨, 娄珊珊, 叶金印. 冷空气影响台风暴雨的中尺度分析及数值模拟[J]. 暴雨灾害, 2019, 38(3): 204-211.
版权所有 © 2011《暴雨灾害》编辑部    鄂ICP备06018784号-3
地址: 湖北省武汉市东湖高新技术开发区金融港二路《暴雨灾害》编辑部
 邮编: 430205 Tel: 027-81804935   E-mail: byzh7939@163.com
技术支持: 北京玛格泰克科技发展有限公司