[an error occurred while processing this directive]
暴雨灾害
       首页|  期刊介绍|  编 委 会|  征稿简则|  期刊订阅|  下载中心|  编辑部公告|  联系我们


暴雨灾害  2021, Vol. 40 Issue (2): 136-146    DOI: 10.3969/j.issn.1004-9045.2021.02.004
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索  |   
2013年相似路径台风“苏力”与“潭美”造成福建暴雨落区差异的成因
黄惠镕1,2, 赵玉春1, 荀爱萍1,2, 陈健康1,2, 张伟1,2
1. 厦门市海峡气象开放重点实验室, 厦门 361012;
2. 福建省厦门市气象台, 厦门 361012
Causality analysis of difference of heavy rainfall distribution in Fujian caused by typhoons Soulik and Trami along similar tracks in 2013
HUANG Huirong1,2, ZHAO Yuchun1, XUN Aiping1,2, CHEN Jiankang1,2, Zhang Wei1,2
1. Xiamen Key Laboratory of Straits Meteorology, Xiamen 361012;
2. Xiamen Meterolocial Bureau, Xiamen 361012
 全文: PDF (12602 KB)   HTML ( 输出: BibTeX | EndNote (RIS)      背景资料
摘要 利用中国气象局(CMA)最佳台风路径资料、地面加密自动站资料、SRTM30数据与ERA5再分析资料,对2013年相似路径台风“苏力”与“潭美”造成的福建暴雨落区差异的成因进行了分析。结果表明:(1)两次台风暴雨过程中福建强降水落区相对于台风移动路径方向的位置在其登陆前后有所不同,台风登陆前强降水均位于其路径北侧(闽东北),台风登陆后“苏力”强降水转至其路径南侧,而“潭美”强降水则位于路径附近。(2)台风登陆前“潭美”相较于“苏力”低纬存在强水汽输送带、闽东北上空高能高湿、低层辐合和高层辐散形成的抽吸作用,配合垂直正涡度场及地形抬升作用,该区域上升运动强且伸展高度高,导致其路径北侧降水强度更大、范围更大。(3)台风登陆后,“苏力”路径的南侧为强水汽辐合中心、气流汇合区及能量锋区,垂直正涡度柱南倾,上升运动强烈且强对流不稳定;“潭美”移动路径附近为强水汽辐合中心,西北气流与偏西气流汇合,维持暖湿结构,正涡度柱范围位于台风中心附近,该区域配合低层辐合、高层辐散,强垂直上升运动。受地形的引导、阻挡作用,低层气流加速辐合与抬升,有利于强降水的维持和加强。(4)台风强降水落区与环境风垂直切变有较好的对应关系,强降水区往往位于环境风垂直切变矢量下游和左侧;“苏力”和“潭美”登陆前后环境风垂直切变强弱和方向不同,可能是造成福建暴雨落区差异的重要原因之一。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
作者相关文章
黄惠镕
赵玉春
荀爱萍
陈健康
张伟
关键词台风   移动路径   暴雨落区   环境风垂直切变     
Abstract: Based on the best typhoon track data from CMA, intensive observations from automatic weather stations, SRTM30 data and ERA5 reanalysis data, we have performed the causality analysis of the difference of heavy rainfall distribution in Fujian caused by typhoons Soulik and Trami along similar tracks in 2013. Results are as follows. (1) Severe precipitation distribution in Fujian is different before and after typhoon landing with respect to the position of typhoon moving path during the two typhoon rainfall events mentioned above. The severe precipitation before both typhoons landing is located on the north side, namely northeast Fujian, of typhoon path. After typhoon landing, the severe precipitation caused by typhoon Soulik is located on the southern side of its path, and that caused by typhoon Trami locates near its path. (2) Before typhoon landing, comparing to the typhoon Soulik, typhoon Trami are associated with strong water vapor transport in the low latitudes. The warm and wet air produced the suction effect by convergence in the mid-and low-level and divergence in the upper level over the northeastern Fujian. Coordinating with the horizontal positive vorticity structure and the topographic lifting, it lead to the strong and high ascending motion in the northeastern Fujian and the intensive and extensive rainfall in the northern side of its path. (3) After typhoon landing, there are the strong vapor convergence center, airflow writhing zone and energy frontal zone in the southern side of Soulik typhoon path. In addition, the vertical positive vorticity column inclines southward, and ascending motion and convective instability are strong. While nearby the Trami moving path is a strong vapor convergence center, the northwest airflow and westerly airflow writhe, the warm and wet structure maintains, and the positive vorticity column is located near the typhoon center, coordinating with the convergence in the mid-and low-level and divergence in the upper level and the strong vertical ascending motion. Guided and blocked by the terrain, the convergence and uplift of the low-level airflow are accelerated, which is conducive to the maintenance and strengthening of severe precipitation. (4) There is a good correspondence between typhoon severe precipitation zone and ambient wind vertical shear (VWS). Severe precipitation zones locate mainly on the downstream and left side of the VWS. Before and after Soulik and Trami landfall, the strength and direction of the VWS are different, which may be one of the important reasons for the difference of heavy rainfall distribution in Fujian.
Key wordstyphoon   moving path   heavy rainfall distribution   ambient wind vertical shear   
收稿日期: 2020-06-22;
基金资助:国家自然科学基金项目(41675047,41705045);福建省气象局开放式气象科学研究基金项目(2019KX02)
作者简介: 黄惠镕,主要从事天气预报业务及其相关技术与方法研究。E-mail:181311539@qq.com
引用本文:   
黄惠镕, 赵玉春, 荀爱萍,等 .2021. 2013年相似路径台风“苏力”与“潭美”造成福建暴雨落区差异的成因[J]. 暴雨灾害, 40(2): 136-146.
HUANG Huirong, ZHAO Yuchun, XUN Aiping, et al .2021. Causality analysis of difference of heavy rainfall distribution in Fujian caused by typhoons Soulik and Trami along similar tracks in 2013[J]. Torrential Rain and Disasters, 40(2): 136-146.
 
没有本文参考文献
[1] 任丽, 唐熠, 杨艳敏, 赵玲. 两个相似路径台风深入内陆所致暴雨对比分析[J]. 暴雨灾害, 2021, 40(5): 484-493.
[2] 邱阳阳, 程向阳, 杨祖祥, 周昆, 李慧敏. 登陆台风“温比亚”引发的龙卷过程分析[J]. 暴雨灾害, 2021, 40(5): 531-540.
[3] 高大伟, 吴利红, 马浩, 姚益平, 方贺, 朱占云, 魏爽. 基于CMPAS的临海市超强台风洪涝淹没个例模拟及检验[J]. 暴雨灾害, 2021, 40(5): 549-557.
[4] 王孝慈, 李双君, 张家国. 湖北省夏季引发极端降水的MCS统计特征分析[J]. 暴雨灾害, 2021, 40(2): 147-152.
[5] 赵琳娜, 姚梦颖, 巩远发, 慕秀香, 李依瞳, 安建宇. 基于贝叶斯模型平均法的“利奇马”台风暴雨预报订正研究[J]. 暴雨灾害, 2020, 39(5): 451-461.
[6] 周仲岛. 近30 a台湾非台风暴雨研究回顾[J]. 暴雨灾害, 2020, 39(2): 109-116.
[7] 朱红芳, 王东勇, 杨祖祥, 陶玮. “海葵”台风(1211号)暴雨雨滴谱特征分析[J]. 暴雨灾害, 2020, 39(2): 167-175.
[8] 任福民, 杨慧. 1949年以来我国台风暴雨及其预报研究回顾与展望[J]. 暴雨灾害, 2019, 38(5): 526-540.
[9] 任丽, 孙磊, 张桂华, 白雪梅, 张天华. 一次东北暖锋锋生暴雨的中尺度特征分析及成因初探[J]. 暴雨灾害, 2019, 38(4): 311-319.
[10] 杨寅, 包红军, 彭涛. 台风“鲇鱼”强降水引发的地质灾害气象风险预警检验与分析[J]. 暴雨灾害, 2019, 38(3): 221-228.
[11] 姚晨, 娄珊珊, 叶金印. 冷空气影响台风暴雨的中尺度分析及数值模拟[J]. 暴雨灾害, 2019, 38(3): 204-211.
[12] 覃丽, 吴启树, 曾小团, 吴俞, 覃月凤. 对流非对称台风“天鸽”(1713)近海急剧增强成因分析[J]. 暴雨灾害, 2019, 38(3): 212-220.
[13] 刘晓波, 储海. 双台风形势下长三角地区一次大暴雨过程的成因分析[J]. 暴雨灾害, 2019, 38(2): 97-106.
[14] 汪小康, 闵爱荣, 廖移山. 2018年4—10月我国主要暴雨天气过程简述[J]. 暴雨灾害, 2019, 38(2): 183-192.
[15] 石运昊, 雷小途. 热带气旋快速增强区域气候漂移及成因初步分析[J]. 暴雨灾害, 2018, 37(6): 502-510.
版权所有 © 2011《暴雨灾害》编辑部    鄂ICP备06018784号-3
地址: 湖北省武汉市东湖高新技术开发区金融港二路《暴雨灾害》编辑部
 邮编: 430205 Tel: 027-81804935   E-mail: byzh7939@163.com
技术支持: 北京玛格泰克科技发展有限公司