[an error occurred while processing this directive]
暴雨灾害
       首页|  期刊介绍|  编 委 会|  征稿简则|  期刊订阅|  下载中心|  编辑部公告|  联系我们


暴雨灾害  2021, Vol. 40 Issue (4): 333-341    DOI: 10.3969/j.issn.1004-9045.2021.04.001
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索  |   
2020年7月4—8日长江中游极端暴雨特征分析
黄治勇1, 王婧羽2, 周文2
1. 中国气象局干部培训学院湖北分院, 武汉 430074;
2. 中国气象局武汉暴雨研究所 暴雨监测预警湖北省重点实验室, 武汉 430205
Characteristics analysis of an extreme heavy rain event in the middle reaches of the Yangtse River from July 4 to 8 in 2020
HUANG Zhiyong1, WANG Jingyu2, ZHOU Wen2
1. Hubei Branch of China Meteorological Administration Training Center, Wuhan 430074;
2. Hubei Key Laboratory for Heavy Rain Monitoring and Warning Research, Institute of Heavy Rain, China Meteorological Administration, Wuhan 430205
 全文: PDF (11936 KB)   HTML ( 输出: BibTeX | EndNote (RIS)      背景资料
摘要 利用多普勒天气雷达、气象卫星、自动气象站等监测数据及NCEP再分析资料,对2020年7月4—8日长江中游持续大暴雨过程的降水特征、中尺度系统演变以及梅雨锋上温度、湿度、涡度、垂直速度等物理量分布特征进行了分析。结果表明:这次暴雨过程具有持续时间长、覆盖范围广、暴雨落区集中、累积雨量大等特点。500 hPa中高纬度稳定的“Ω”型环流是持续大暴雨形成的有利环流背景。对流单体回波顶高、强度大、质心低以及“列车效应”是此次过程暴雨强度大的重要原因。梅雨锋上物理量分布具有如下特征:自下而上由假相当位温(θse)构成的梅雨锋接近垂直状态,锋区内对流层低层特别是850 hPa以下大气层结不稳定,且低层锋区内风速小;35°N以北自对流层顶有干冷空气向南侵入至梅雨锋附近;暴雨中心上空经历了低层辐合、高层辐散和垂直速度由弱增强到再减弱的演变过程,有正涡度向梅雨锋前输送;梅雨锋对流层低层水平温度梯度非常小,且梅雨锋区低层存在一相对低温区;梅雨锋附近存在一定的水平比湿梯度,且其北侧比湿梯度较大。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
作者相关文章
黄治勇
王婧羽
周文
关键词极端暴雨   梅雨锋   不稳定   干侵入     
Abstract: Based on Doppler weather radar data, meteorological satellite cloud images, observations from automatic weather station (AWS) and NCEP reanalysis data, we have conducted the analysis of a sustained extra heavy rain event in the middle reaches of the Yangtse River from July 4 to 8 in 2020 including its precipitation characteristics, meso-scale convective systems (MCS) evolution and the distribution of temperature, humidity, vorticity, vertical velocity and other physical quantities on the Meiyu front. The results indicate that the event is characterized by long duration, wide coverage, concentrated rainstorm areas, large accumulated rainfall. This sustained extra heavy rain event is due to the ambient background of a stable Ω-shaped general atmospheric circulation in the mid-and high- latitudes at 500 hPa. The high echo top, great intensity and low centroid of convective cell and the "train effect" are the main reason that leads to the heavy rain event with high intensity. The following are the main characteristics of the physical quantities on the Meiyu front. The Meiyu front formed by pseudo-equivalent potential temperature (θse) from down to up is close to vertical, then the atmospheric stratification in the lower troposphere especially below 850 hPa within front zone is unstable and the wind speed in the low-level front zone is small. The dry and cold air from tropopause in north of 35°N intrudes southerly to the Meiyu front. There is an evolution of convergence in the mid- and low-level and divergence in the upper level and the vertical velocity increasing and then decreasing over the heavy rain center, and positive vorticity transporting to front of the Meiyu front. The horizontal temperature gradient in the lower troposphere of the Meiyu front is very small, and there is a relative low temperature zone in the lower level of the meiyu front zone. There is a certain horizontal specific humidity gradient near the Meiyu front, and that on the north side of the meiyu front is greater.
Key wordsheavy rain   Meiyu front   unstable stratification   dry air intrusion   
收稿日期: 2020-11-09;
基金资助:中国气象局预报关键技术发展专项(YBGJXM(2018)1A);国家自然科学基金项目(41975058,41620104009,91637211)
作者简介: 黄治勇,主要从事暴雨机理研究。E-mail:hzyqxj@126.com
引用本文:   
黄治勇, 王婧羽, 周文 .2021. 2020年7月4—8日长江中游极端暴雨特征分析[J]. 暴雨灾害, 40(4): 333-341.
HUANG Zhiyong, WANG Jingyu, ZHOU Wen .2021. Characteristics analysis of an extreme heavy rain event in the middle reaches of the Yangtse River from July 4 to 8 in 2020[J]. Torrential Rain and Disasters, 40(4): 333-341.
 
没有本文参考文献
[1] 苏爱芳, 吕晓娜, 崔丽曼, 李周, 席乐, 栗晗. 郑州“7.20”极端暴雨天气的基本观测分析[J]. 暴雨灾害, 2021, 40(5): 445-454.
[2] 任丽, 唐熠, 杨艳敏, 赵玲. 两个相似路径台风深入内陆所致暴雨对比分析[J]. 暴雨灾害, 2021, 40(5): 484-493.
[3] 胡燕平, 单铁良, 顾佳佳. 沙颍河流域一次短时极端强降水预报失误剖析[J]. 暴雨灾害, 2021, 40(5): 494-504.
[4] 田付友, 杨舒楠, 郑永光, 夏坤. 北京地区两次极端特大暴雨过程中短时强降水环境条件对比分析[J]. 暴雨灾害, 2021, 40(1): 27-36.
[5] 贺晓露, 汪小康, 郝元甲, 秦幼文, 杨涛, 李格. 复杂地形影响下鄂东北梅雨锋大暴雨MCS的触发和演变[J]. 暴雨灾害, 2020, 39(6): 611-619.
[6] 李祥, 张立凤, 王敬囝. 梅雨锋暴雨预报对分辨率与积云参数化的敏感性[J]. 暴雨灾害, 2020, 39(6): 637-646.
[7] 陈宏, 杨晓君, 尉英华, 易笑园, 杨洋, 刘一玮, 徐威. 干冷空气入侵台风“海棠”残余低压引发的华北地区大暴雨分析[J]. 暴雨灾害, 2020, 39(3): 241-249.
[8] 张萍萍, 徐双柱, 董良鹏, 张蒙蒙. 一次极端短时强降水过程中FY-3微波湿度计观测特征分析[J]. 暴雨灾害, 2020, 39(3): 300-305.
[9] 周仲岛. 近30 a台湾非台风暴雨研究回顾[J]. 暴雨灾害, 2020, 39(2): 109-116.
[10] 崔春光, 胡伯威, 王晓芳, 李山山, 周文. 相当正压切变型梅雨锋暴雨研究进展[J]. 暴雨灾害, 2019, 38(5): 541-553.
[11] 任丽, 孙磊, 张桂华, 白雪梅, 张天华. 一次东北暖锋锋生暴雨的中尺度特征分析及成因初探[J]. 暴雨灾害, 2019, 38(4): 311-319.
[12] 陈云辉, 许爱华, 许彬, 陈娟, 李婕. 江西一次极端雷暴大风过程的中尺度特征与成因分析[J]. 暴雨灾害, 2019, 38(2): 126-134.
[13] 许彬, 许爱华, 陈云辉, 陈翔翔. 强对流天气概念模型在江西“3·4”极端大风预报中的应用[J]. 暴雨灾害, 2019, 38(2): 144-151.
[14] 梁维亮, 翟丽萍, 农孟松, 李向红. 广西一次深秋暴雨过程降水时空差异成因分析[J]. 暴雨灾害, 2019, 38(1): 7-16.
[15] 聂云, 周继先, 顾欣, 周艳, 杜小玲. “6.18”梅雨锋西段黔东南大暴雨个例诊断分析[J]. 暴雨灾害, 2018, 37(5): 445-454.
版权所有 © 2011《暴雨灾害》编辑部    鄂ICP备06018784号-3
地址: 湖北省武汉市东湖高新技术开发区金融港二路《暴雨灾害》编辑部
 邮编: 430205 Tel: 027-81804935   E-mail: byzh7939@163.com
技术支持: 北京玛格泰克科技发展有限公司