[an error occurred while processing this directive]
暴雨灾害
       首页|  期刊介绍|  编 委 会|  征稿简则|  期刊订阅|  下载中心|  编辑部公告|  联系我们


暴雨灾害  2021, Vol. 40 Issue (4): 362-373    DOI: 10.3969/j.issn.1004-9045.2021.04.004
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索  |   
山东省雷暴大风天气学分型与物理诊断量统计特征
华雯丽1, 杨晓霞2, 田雪珊3, 李恬3, 宋嘉佳2, 张磊2
1. 复旦大学大气与海洋科学系, 上海 200438;
2. 山东省气象台, 济南 250031;
3. 山东省济南市气象台, 济南 250021
Synoptic classification and statistical characteristics of physical diagnoses for thunderstorm gale in Shandong Province
HUA Wenli1, YANG Xiaoxia2, TIAN Xueshan3, LI Tian3, SONG Jiajia2, ZHANG Lei2
1. Department of Atmospheric and Marine Sciences, Fudan University, Shanghai 200438;
2. Shandong Meteorological Observatory, Jinan 250031;
3. Jinan Meteorological Observatory in Shandong, Jinan 250021
 全文: PDF (2732 KB)   HTML ( 输出: BibTeX | EndNote (RIS)      背景资料
摘要 使用MICAPS地面气象观测资料和探空资料,对山东省2009—2016年4—9月产生的雷暴大风以500 hPa天气系统为主进行分型,并以低层(850 hPa)中尺度天气系统和地面天气系统为辅对各型雷暴大风进行分类。然后,采用百分位数法统计分析各型雷暴大风发生时的物理诊断量,并给出各物理诊断量的临界值。结果表明:(1)基于500 hPa天气影响系统配置,山东省雷暴大风分为槽前型、槽后型和副高边缘型,再根据雷暴大风落区与850 hPa天气系统的位置关系,又分为切变线辐合类、偏南气流辐合类和偏北气流辐合类3种类型,而根据海平面气压场中天气系统与雷暴大风的位置关系,则将产生雷暴大风的地面天气系统主要归纳为6种类型。(2)将山东省划分为内陆地区和半岛地区,4—6月内陆地区雷暴大风的适用物理诊断量为850 hPa与500 hPa温差(△T850-500)、500 hPa与850 hPa风速差(△V500-850)、风暴强度指数(SSI)和大风指数(WI),半岛地区代表大气热力和动力综合特征的物理诊断量SSIWI对雷暴大风的指示性较好。(3)7—8月山东全省,代表大气热力不稳定的物理诊断量即对流有效位能(CAPE)、K指数、抬升指数(LI)、700 hPa与850 hPa假相当位温差(△θse700-850)、强天气威胁指数(SWEAT),对雷暴大风有较好的指示性。(4)9月山东省雷暴大风主要发生在半岛地区,△θse700-850SSISWEAT和△V500-850对雷暴大风具有较好的指示性。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
作者相关文章
华雯丽
杨晓霞
田雪珊
李恬
宋嘉佳
张磊
关键词雷暴大风   天气学模型   物理诊断量   临界值     
Abstract: In this study, we divide the region covering Shandong Province into inland and peninsula area. By using the surface meteorological observation and sounding data from the MICAPS, we have conducted a classification to the thunderstorm gale events occurred between April and September from 2009 to 2016 in Shandong Province primarily based on the 500 hPa synoptic systems. In addition, based on the mesoscale weather systems in the 850 hPa and at the surface, the different patterns of thunderstorm gale events are classified. Then the physical diagnose of each pattern of thunderstorm gale event is statistically analyzed by using the percentile method, and the critical values of these physical diagnoses are given. The results show that (1) based on the configuration of the 500 hPa weather influence systems, the thunderstorm gales in Shandong can be divided into pre-trough pattern, post-trough pattern and around subtropical high pattern. Additionally, according to the relation between the falling area of thunderstorm strong wind and the 850 hPa weather systems, they can also be divided into three types, i.e. shear line convergence, southerly airflow convergence and northerly airflow convergence. Furthermore, according to the position relationship between the weather system and the thunderstorm gale in the sea-level pressure field, the surface weather systems that generate thunderstorms high winds can be mainly divided six types. (2) The suitable physical diagnoses of thunderstorm gales between April and June in the inland area of Shandong are temperature difference (ΔT850-500) between 850 hPa and 500 hPa, velocity difference (ΔV500-850) between 500 hPa and 850 hPa, Storm Strength Index (SSI) and Wind Index (WI), while in the peninsula area of Shandong, the physical diagnoses SSI and WI, which can represent the comprehensive characteristics of atmospheric thermodynamics and dynamics, show a good indication to thunderstorm gales in this area. (3) The physical diagnoses Convective Available Potential Energy (CAPE), K index, Lift Index (LI), pseudo-equivalent potential temperature difference (Δθse700-850) between 700 hPa and 850 hPa and severe weather threat index (SWEAT), representing atmospheric thermal instability, have good indicative signification to the thunderstorm gales between July and August in Shandong province. (4) Δθse700-850, SSI, SWEAT and ΔV500-850 have good indication to the thunderstorm gales occurred in the peninsula area of Shandong in September.
Key wordsthunderstorm gale   synoptic classification   physical diagnoses   critical value   
收稿日期: 2020-09-22;
基金资助:中国气象局预报预测核心业务发展专项(CMAHX20160208);山东省气象局气象科学技术研究项目(2014sdqxm20);山东省气象科学研究所数值天气预报应用技术开放研究基金项目(SDQXKF2014Z05)
通讯作者: 杨晓霞,主要从事天气预报业务以及强对流、暴雨和大风等灾害性天气研究。E-mail:yxxjn@163.com   
作者简介: 华雯丽,主要从事天气气候与环境相关研究。E-mail:hwljn@163.com
引用本文:   
华雯丽, 杨晓霞, 田雪珊,等 .2021. 山东省雷暴大风天气学分型与物理诊断量统计特征[J]. 暴雨灾害, 40(4): 362-373.
HUA Wenli, YANG Xiaoxia, TIAN Xueshan, et al .2021. Synoptic classification and statistical characteristics of physical diagnoses for thunderstorm gale in Shandong Province[J]. Torrential Rain and Disasters, 40(4): 362-373.
 
没有本文参考文献
[1] 吕晓娜, 牛淑贞, 张一平, 栗晗. 基于概率与权重的雷暴大风潜势客观预报方法研究[J]. 暴雨灾害, 2020, 39(1): 20-29.
[2] 杨晓亮, 杨敏, 隆璘雪, 艾敬宜. 冷涡背景下河北雷暴大风环境条件与对流风暴演变个例分析[J]. 暴雨灾害, 2020, 39(1): 52-62.
[3] 唐钱奎, 张涛. 成都一次雷暴大风的中尺度特征分析[J]. 暴雨灾害, 2019, 38(4): 338-345.
[4] 陈云辉, 许爱华, 许彬, 陈娟, 李婕. 江西一次极端雷暴大风过程的中尺度特征与成因分析[J]. 暴雨灾害, 2019, 38(2): 126-134.
[5] 许彬, 许爱华, 陈云辉, 陈翔翔. 强对流天气概念模型在江西“3·4”极端大风预报中的应用[J]. 暴雨灾害, 2019, 38(2): 144-151.
[6] 杨芳园,沈茜,周稀,邹灵宇,段燕楠,潘娅婷,李晓鹏. 云南省一次飑线大风天气过程的中尺度特征分析[J]. 暴雨灾害, 2018, 37(01): 48-56.
[7] 柴东红, 杨晓亮, 吴紫煜, 闫雪瑾,裴宇杰, 李宗涛, 张义军. 京津冀地区雷暴大风天气的统计分析[J]. 暴雨灾害, 2017, 36(03): 193-199.
[8] 杜小玲,吴磊,杨秀庄,卢璐,魏涛,余清. 梅雨锋西段持续性暴雨的环境场特征及贵阳极端降水成因[J]. 暴雨灾害, 2016, 35(5): 415-426.
[9] 苏爱芳,张宁,袁小超,张青珍. 河南“7.14”强降水和“8.02”雷暴大风过程β中尺度对流系统对比分析[J]. 暴雨灾害, 2016, 35(2): 126-137.
[10] 严仕尧,李昀英,齐琳琳,安洁,刘君. 华北产生雷暴大风的动力热力综合指标分析及应用[J]. 暴雨灾害, 2013, 32(1): 17-23.
[11] 严仕尧, 李昀英, 齐琳琳, 安洁. 垂直能量螺旋度指数及其在槽前型雷暴大风预报中的应用[J]. 暴雨灾害, 2012, 31(1): 23-28.
[12] 洪国平,彭春华. 武汉市梅雨期暴雨天气模型及预报[J]. 暴雨灾害, 1998, 17(03): 19-21.
版权所有 © 2011《暴雨灾害》编辑部    鄂ICP备06018784号-3
地址: 湖北省武汉市东湖高新技术开发区金融港二路《暴雨灾害》编辑部
 邮编: 430205 Tel: 027-81804935   E-mail: byzh7939@163.com
技术支持: 北京玛格泰克科技发展有限公司