[an error occurred while processing this directive]
暴雨灾害
       首页|  期刊介绍|  编 委 会|  征稿简则|  期刊订阅|  下载中心|  编辑部公告|  联系我们


暴雨灾害  2021, Vol. 40 Issue (4): 419-429    DOI: 10.3969/j.issn.1004-9045.2021.04.010
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索  |   
一次长生命史超级单体风暴的雷达观测特征
陈瑞敏1,2, 赵孝伟1,2, 于海磊1, 王丛梅3
1. 河北省衡水市气象局, 衡水 053000;
2. 河北省气象与生态环境重点实验室, 石家庄 050021;
3. 河北省邢台市气象局, 邢台 054000
Characteristics of a supercell storm with long life cycle based on analysis of weather radar data
CHEN Ruimin1,2, ZHAO Xiaowei1,2, YU Hailei1, WANG Congmei3
1. Hengshui Meteorological Office of Hebei Province, Hengshui 053000;
2. Hebei Key Laboratory of Meteorology and Ecological Environment, Shijiazhuang 050021;
3. Xingtai Meteorological Office of Hebei Province, Xingtai 054000
 全文: PDF (6746 KB)   HTML ( 输出: BibTeX | EndNote (RIS)      背景资料
摘要 利用地面观测资料、探空资料以及石家庄多普勒天气雷达和饶阳双偏振雷达资料等,对2018年6月13日影响河北中南地区的一个长生命史超级单体风暴的环流背景、雷达观测特征等进行了分析。结果表明:(1)此超级单体发生在涡后横槽转竖的环流背景下。(2)风暴生命史长204 min,其中超级单体维持时间长达138 min,其间雷达最大反射率因子基本上维持在65 dBz以上。(3)中气旋深厚并强烈发展是超级单体发展和维持的重要动力机制。中气旋底高最低可达风暴底部,顶高变化幅度较小,低质心中气旋和高质心中气旋的形成和发展都可能引起地面降雹,降雹期间对应超级单体短暂减弱。(4)超级单体维持期间一直伴有气旋、反气旋涡旋对特征。超级单体的钩状回波特征明显,表现为典型的回波墙-弱回波区-悬挂回波的垂直结构;低层辐合、高层辐散,高空辐散大于低层辐合,有利于超级单体内部强烈的旋转上升运动;有明显的三体散射和旁瓣回波,三体散射最长超过60 km,持续时间长达150 min。(5)双偏振雷达探测的超级单体反射率因子≥55 dBz,对应位置差分反射率-0.5~0.5 dB,差分传播相移率仅1.5~2.0°/km,相关系数在0.75~0.92之间,表明超级单体内同时存在液滴和较大冰雹。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
作者相关文章
陈瑞敏
赵孝伟
于海磊
王丛梅
关键词超级单体   中气旋   涡旋对   冰雹   雷达回波特征     
Abstract: Using datasets of routine upper-air and surface weather observations, surface automatic weather station, Doppler weather radar at Shijiazhuang, dual-polarization radar at Raoyang and other relevant data, we have conducted a detailed analysis on the atmospheric circulation environment and radar observed characteristics of a supercell storm with long life cycle that affected the central and southern Hebei on 13 June 2018. The main results are as follow. (1) This supercell occurred under the atmospheric circulation of the revising of a transverse trough at the back of vortex. (2) The life cycle of the storm is 204 min long, during which the supercell lasted for 138 min, and the maximum radar reflectivity factor is basically maintained above 65 dBz during this period. (3) The deep and strong development of a mesocyclone is an important dynamic mechanism for the development and maintenance of the supercell storm. The bottom of the mesocyclone can reach the bottom of the storm, and the top height of the mesocyclone had little changes. The formation and development of both low-centroid and high-centroid mesocyclone may cause hail on the ground, and the supercell weakened temporarily during the corresponding hail period. (4) During the maintenance period of supercell, the vortex pairs of cyclones and anticyclones are always accompanied, and the cyclonic vortex is dominant. The hook echo characteristics of the supercell are obvious, which shows the typical vertical structure of echo wall-weak echo region-hanging echo. The structure such as convergence in the low-level, divergence in the upper level, and divergence in the upper level being greater than convergence in the low-level, is conducive to the strong rotation and ascending movement within the supercell. There are obvious three body scatter signature (TBSS) and sidelobe echo, and the longest TBSS is more than 60 km and its duration is as long as 150 min. (5) Dual polarization radar detection shows that the reflectivity factor of the supercell is greater than or equal to 55 dBz, the differential reflectivity in the corresponding position is from -0.5 dB to 0.5 dB, the differential propagation phase shift rate is only between 1.5°/km and 2.0°/km, and the correlation coefficient is from 0.75 to 0.92, which indicates that there are droplets and large hails within the supercell at the same time.
Key wordssupercell storm   mesocyclone   vortex pairs   hail   radar echo characteristics   
收稿日期: 2020-08-14;
基金资助:河北省“十三五”气象重点项目(hbrywcsy-2017-05);国家重点研发计划(2017YFB0504002);河北省自然科学基金项目(D2020108049);河北省衡水市气象局科研开发项目(18hsky03)
通讯作者: 赵孝伟,主要从事天气预报技术方法与人工影响天气研究。E-mail:zxwwss@163.com   
作者简介: 陈瑞敏,主要从事天气预报业务与技术工作。E-mail:chenruimin007@sina.com
引用本文:   
陈瑞敏, 赵孝伟, 于海磊,等 .2021. 一次长生命史超级单体风暴的雷达观测特征[J]. 暴雨灾害, 40(4): 419-429.
CHEN Ruimin, ZHAO Xiaowei, YU Hailei, et al .2021. Characteristics of a supercell storm with long life cycle based on analysis of weather radar data[J]. Torrential Rain and Disasters, 40(4): 419-429.
 
没有本文参考文献
[1] 于怀征, 刁秀广, 孟宪贵, 陆桂荣. 山东省一次罕见强对流天气的环境场及雷达特征分析[J]. 暴雨灾害, 2020, 39(5): 477-486.
[2] 植江玲, 蔡康龙, 黄先香, 叶朗明. 两类不同风灾个例的灾情调查与观测对比分析[J]. 暴雨灾害, 2020, 39(4): 418-426.
[3] 曾勇, 万雪丽, 李丽丽, 邹书平, 罗喜平, 杨哲. 一次多单体冰雹天气过程的雷达回波与闪电特征分析[J]. 暴雨灾害, 2020, 39(3): 250-258.
[4] 何炳文, 胡振菊, 高伟, 田泽芸, 贾岸斌. 湘西北地区强冰雹的多普勒天气雷达旁瓣回波统计分析[J]. 暴雨灾害, 2020, 39(3): 269-275.
[5] 靳振华, 易笑园, 孙晓磊, 刘一玮, 李钢. 天津沿海一次强降水超级单体环境条件及结构分析[J]. 暴雨灾害, 2019, 38(6): 606-614.
[6] 翟丽萍, 农孟松, 梁维亮, 赖珍权. 造成临桂极端大风的超级风暴单体观测分析[J]. 暴雨灾害, 2019, 38(4): 346-353.
[7] 严红梅, 梁亮, 黄艳, 刘学华, 钱华峰, 史瑞琴. 金华地区18次冰雹天气的大气环境与雷达回波特征分析[J]. 暴雨灾害, 2019, 38(1): 48-58.
[8] 沙修竹, 丁建芳, 李萌. 催化防雹最优方案的数值试验探究[J]. 暴雨灾害, 2018, 37(6): 558-565.
[9] 黄俊杰, 苟阿宁. 鄂西北一次超级单体风暴过程的观测分析[J]. 暴雨灾害, 2018, 37(5): 462-469.
[10] 刘晶, 于碧馨, 赵克明, 杨莲梅. 乌鲁木齐“4.24”短时降水和冰雹中小尺度特征对比分析[J]. 暴雨灾害, 2018, 37(4): 347-355.
[11] 曾勇,杨莲梅. 南疆西部两次短时强降水天气中尺度特征对比分析[J]. 暴雨灾害, 2017, 36(05): 410-421.
[12] 郑飒飒,刘建西,刘晓璐,马超. 西昌一次降雹过程的数值模拟研究[J]. 暴雨灾害, 2017, 36(05): 475-481.
[13] 杨振鑫, 孙磊, 牛润和, 何玉春, 李宛彧. 甘肃临夏地区冰雹时空分布特征及其灾害风险区划初探[J]. 暴雨灾害, 2016, 35(6): 596-601.
[14] 马素艳,韩经纬,斯琴,荀学义,张和平. 冷涡背景下呼和浩特市冰雹特征分析[J]. 暴雨灾害, 2016, 35(6): 529-536.
[15] 朱文剑,盛杰,郑永光,杨波,张小玲,樊利强,张小雯, 刘鑫华,曹艳察,林隐静,方翀,张涛. 1522号“彩虹”台风龙卷现场调查与中尺度特征分析[J]. 暴雨灾害, 2016, 35(5): 403-414.
版权所有 © 2011《暴雨灾害》编辑部    鄂ICP备06018784号-3
地址: 湖北省武汉市东湖高新技术开发区金融港二路《暴雨灾害》编辑部
 邮编: 430205 Tel: 027-81804935   E-mail: byzh7939@163.com
技术支持: 北京玛格泰克科技发展有限公司