[an error occurred while processing this directive]
暴雨灾害
       首页|  期刊介绍|  编 委 会|  征稿简则|  期刊订阅|  下载中心|  编辑部公告|  联系我们


暴雨灾害  2021, Vol. 40 Issue (5): 455-465    DOI: 10.3969/j.issn.1004-9045.2021.05.002
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索  |   
京津冀一次暖区大暴雨的成因分析
杨晓亮1,2, 杨敏3, 段宇辉1, 朱刚1, 孙云1
1. 河北省气象台, 石家庄 050021;
2. 河北省气象与生态环境重点实验室, 石家庄 050021;
3. 河北省气象行政技术服务中心, 石家庄 050021
Analysis on causes of a warm-sector torrential rain event in the Beijing-Tianjin-Hebei region
YANG Xiaoliang1,2, YANG Min3, DUAN Yuhui1, ZHU Gang1, SUN Yun1
1. Hebei Meteorological Observation, Shijiazhuang 050021;
2. Key Laboratory of Meteorology and Ecological Environment of Hebei Province, Shijiazhuang 050021;
3. Heibei Provincial Meteorological Administrative and Technical Service Center, Shijiazhuang 050021
 全文: PDF (20665 KB)   HTML ( 输出: BibTeX | EndNote (RIS)      背景资料
摘要 利用常规气象观测资料、区域自动站加密观测资料、NCEP 1°×1°逐6 h再分析资料,以及气象卫星、多普勒天气雷达、风廓线雷达探测资料与北京变分多普勒雷达分析系统(VDRAS)反演资料,对2020年8月12日京津冀地区一次区域性暖区大暴雨过程的降水特征、环流背景、中尺度系统演变特征及其成因进行了分析。结果表明:这次过程发生在副热带高压边缘、500 hPa以下暖气团中,主要影响系统为850 hPa低空急流和暖式切变线。强降水表现出明显的阶段性,主要分两个阶段,分别对应河北南部和京津冀北部两个暴雨区,其形成原因不同。第一阶段强降水由一α中尺度对流系统(MαCS)发生发展造成,降雨前局地水汽和能量充足,地面辐合线触发不稳定能量释放形成线状强回波,对应地面气旋性环流为螺旋状回波,其上的对流单体不断发生发展造成强降水。第二阶段强降水由多个β中尺度云团产生,北上加强的偏南风低空急流为暴雨的发生提供了充足的水汽和动力条件,边界层低空急流及中尺度低涡系统是第二阶段大暴雨的重要影响系统,雄安新区单站125.9 mm极端小时强降水是由“逗点状”回波尾部暖云降水叠加“列车效应”共同造成。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
作者相关文章
杨晓亮
杨敏
段宇辉
朱刚
孙云
关键词暖区暴雨   低空急流   地面辐合线   中尺度对流系统     
Abstract: Based on conventional meteorological observations, observational data from the regional automatic weather stations, NCEP reanalysis data with spatial resolution of 1°×1° and temporal resolution of 6 h, satellite images, Doppler weather radar and wind profiler data, as well as the retrieval results from BeijingVariational Doppler Radar Analysis System (VDRAS), we have conducted analysis of the precipitation characteristics, atmospheric circulation, mesoscale system evolution features and the causes of a regional warm-sector torrential rain event in the Beijing-Tianjin-Hebei region on 12 August 2020. The results show that the event occurs in the warm air mass below 500 hPa at the edge of the subtropical high, and the main influencing systems are the low-level jet and the warm shear line at the 850 hPa. The whole severe precipitation event presented clearly the phased characteristics; it can be divided into two stages corresponding to the two different rainstorm areas, i.e., the southern Hebei and the north part of the Beijing-Tianjin-Hebei region with different formation mechanisms. The severe precipitation in the first stage is caused by a meso-α-scale convective system (MαCS), which is triggered by the surface convergence line. Before the precipitation starts, the local water vapor and unstable energy is rich. When the surface convergence line triggers the release of unstable energy, a strong linear echo is formed. The severe precipitation is mainly caused by the continuous development of convective cells in the spiral echo corresponding to the surface cyclonic circulation. The severe precipitation in the second stage is generated by several β-scale cloud clusters, and the southerly low-level jet strengthened northward provides sufficient water vapor and better dynamic conditions for the occurrence of torrential rain. The low-level jet in the boundary layer and the mesoscale low vortex system are the crucial influence systems at the second stage of this event. The hourly extremely severe precipitation of 125.9 mm at a station in Xiongan New Area is caused jointly by the warm cloud precipitation at the tail of comma-shaped radar echo and the "train effect".
Key wordswarm-sector torrential rain   low-level jet   surface convergence line   mesoscale convective system   
收稿日期: 2021-01-13;
基金资助:中国气象局创新发展专项(CXFZ2021J029);河北省重点研发计划项目(21375404D)
通讯作者: 杨敏,主要从事气象灾害防御及风险研究。E-mail:ym031167108927@163.com   
作者简介: 杨晓亮,主要从事灾害性天气预报技术与方法研究。E-mail:hbsqxt087@sina.com
引用本文:   
杨晓亮, 杨敏, 段宇辉,等 .2021. 京津冀一次暖区大暴雨的成因分析[J]. 暴雨灾害, 40(5): 455-465.
YANG Xiaoliang, YANG Min, DUAN Yuhui, et al .2021. Analysis on causes of a warm-sector torrential rain event in the Beijing-Tianjin-Hebei region[J]. Torrential Rain and Disasters, 40(5): 455-465.
 
没有本文参考文献
[1] 胡燕平, 单铁良, 顾佳佳. 沙颍河流域一次短时极端强降水预报失误剖析[J]. 暴雨灾害, 2021, 40(5): 494-504.
[2] 刘慧敏, 马晓华, 梁生俊, 康磊, 蒋伊蓉, 娄盼星, 艾锐. 2017年7月25日陕北局地特大暴雨过程的β中尺度特征分析[J]. 暴雨灾害, 2021, 40(4): 374-382.
[3] 聂云, 周继先, 杨帆, 杨群, 杜小玲. 梵净山东南侧夏季暖区暴雨中尺度系统演变与环境场特征个例分析[J]. 暴雨灾害, 2021, 40(2): 125-135.
[4] 毛紫怡, 刘金卿. 湖南省西南涡暴雨的分类研究[J]. 暴雨灾害, 2021, 40(1): 52-60.
[5] 杨梦兮, 刘梅, 柯丹, 陈圣劼. 2020年江淮地区梅雨异常的成因分析[J]. 暴雨灾害, 2020, 39(6): 555-563.
[6] 张夕迪, 沈文强, 杨舒楠, 张恒德, 韩冰. 2020年7月4—10日长江流域极端强降雨过程MCS活动特征分析[J]. 暴雨灾害, 2020, 39(6): 593-602.
[7] 翟丹华, 张亚萍, 朱岩, 黎中菊, 邱鹏, 黎春蕾. 綦江流域一次破记录洪水过程的水文与雷达回波特征分析[J]. 暴雨灾害, 2020, 39(6): 603-610.
[8] 周仲岛. 近30 a台湾非台风暴雨研究回顾[J]. 暴雨灾害, 2020, 39(2): 109-116.
[9] 王艳兰, 伍静, 唐桥义, 王娟, 王军君. 2019年6月桂林三次强降水天气成因对比分析[J]. 暴雨灾害, 2020, 39(2): 136-147.
[10] 曾勇, 杨莲梅. 新疆西部“6.16”强降水过程的中尺度分析[J]. 暴雨灾害, 2020, 39(1): 41-51.
[11] 蔡景就, 伍志方, 陈晓庆, 兰宇, 郭姿佑, 郭春迓. “18·8”广东季风低压持续性特大暴雨成因分析[J]. 暴雨灾害, 2019, 38(6): 576-586.
[12] 叶朗明, 吴乃庚, 张华龙, 蔡景就, 伍志方. 海陆风和地形对一次弱天气背景下暖区特大暴雨的影响分析[J]. 暴雨灾害, 2019, 38(6): 597-605.
[13] 靳振华, 易笑园, 孙晓磊, 刘一玮, 李钢. 天津沿海一次强降水超级单体环境条件及结构分析[J]. 暴雨灾害, 2019, 38(6): 606-614.
[14] 余蓉, 杜牧云, 顾永刚. 锋面短时强降水系统发展模态的环境因子浅析[J]. 暴雨灾害, 2019, 38(6): 640-648.
[15] 谌芸, 陈涛, 汪玲瑶, 李晟祺, 徐珺. 中国暖区暴雨的研究进展[J]. 暴雨灾害, 2019, 38(5): 483-493.
版权所有 © 2011《暴雨灾害》编辑部    鄂ICP备06018784号-3
地址: 湖北省武汉市东湖高新技术开发区金融港二路《暴雨灾害》编辑部
 邮编: 430205 Tel: 027-81804935   E-mail: byzh7939@163.com
技术支持: 北京玛格泰克科技发展有限公司