[an error occurred while processing this directive]
暴雨灾害
       首页|  期刊介绍|  编 委 会|  征稿简则|  期刊订阅|  下载中心|  编辑部公告|  联系我们


暴雨灾害  2021, Vol. 40 Issue (5): 484-493    DOI: 10.3969/j.issn.1004-9045.2021.05.005
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索  |   
两个相似路径台风深入内陆所致暴雨对比分析
任丽, 唐熠, 杨艳敏, 赵玲
黑龙江省气象台, 哈尔滨 150030
Comparative analysis of rainstorms caused by two typhoons with similar path deep inland
REN Li, TANG Yi, YANG Yanmin, ZHAO Ling
Heilongjiang Provincial Meteorological Observatory, Harbin, 150030
 全文: PDF (11045 KB)   HTML ( 输出: BibTeX | EndNote (RIS)      背景资料
摘要 使用中国气象局热带气旋年鉴、FY-2云顶亮温资料、常规观测资料及NCEP/NCAR再分析资料,对两个路径相似北上深入内陆,发生变性并直击黑龙江省的1215号超强台风“Bolaven (布拉万)”和1913号超强台风“玲玲(Lingling)”特征和降水差异进行对比分析。结果表明:(1)两次台风暴雨过程均与中尺度锋生有关。较强冷空气侵入促使“布拉万”西北侧锋区强烈锋生,深厚的上升运动形成中尺度对流区,降水强度大,使其变性快,移动慢。(2)“玲玲”北上到相同纬度时具有更大的强度,更深厚的湿层和低层更大的比湿,但由于仅有扩散南下的弱冷空气侵入台风环流,使其变性慢,移动快,台风中心北侧锋生作用弱,降水强度和范围均较小。(3)对流结构和降水强度有较大差异,“布拉万”云系东侧减弱消散,西侧和北侧与冷空气相互作用触发对流;“玲玲”云系结构基本维持不变,中尺度对流云团出现在台风中心及中心北部。(4)“布拉万”过程,大气具有强对流不稳定性,暴雨区域内对流活跃,强降水持续时间长。“玲玲”北上时,仅在低层有弱对流不稳定,对流较弱,强降水持续时间较短。暴雨区低层对流不稳定、中层湿对称不稳定,有利于强降水的维持和发展。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
作者相关文章
任丽
唐熠
杨艳敏
赵玲
关键词变性台风   锋生   非对称结构   对称不稳定     
Abstract: Typhoons Bolaven (1215) and Lingling (1913) were two typhoons that went directly north to hit Heilongjiang province and caused heavy rain. Both of them changed in the process of going north to the inland. The tropical cyclone yearbook, Fengyun cloud top brightness temperature data, conventional observation data and NCEP/NCAR reanalysis data were used for comparative analysis of the characteristics and precipitation differences between the two typhoons. The results are as follows. (1) The rainstorm processes of the two typhoons were both related to mesoscale frontogenesis in the typhoon circulation. The strong cold air intrusion promoted the strong frontal growth in the northwest frontal area of Bolaven.The deep ascending movement formed mesoscale convective zone and the precipitation intensity was high.Strong cold air made Bolaven denaturated fast and moved slowly. (2) Lingling had greater strength, deeper wet layers and greater specific humidity at lower levels as it travelled north to the same latitude.As only weak cold air spreading southward intruded into the typhoon circulation, Lingling became degenerated and moved quickly.The northern front of the typhoon center was weak, and the precipitation intensity and range were small. (3) The convective structure and precipitation intensity were significantly different: the east side of Bolaven cloud system weakened and dissipated, while the west side and north side interacted with the cold air to trigger convection.The structure of the Lingling cloud system was basically unchanged, and mesoscale convective clouds appeared in the center and the north of the center. (4) Bolaven process showed that the atmosphere had strong convective instability, the convection was active in the rainstorm area, and the duration of heavy precipitation was long.When Lingling moved north, there was only weak convective instability in the lower layer, which was weak, and the duration of heavy precipitation was short.The convective instability in the lower layer and the symmetrical instability in the middle layer of the rainstorm area were conducive to the maintenance and development of heavy precipitation.
Key wordsextratropical transition   frontogenesis   asymmetric structure   condition symmetry instability   
收稿日期: 2020-02-27;
基金资助:黑龙江省自然科学基金联合引导项目(LH2019D016);中国气象局沈阳大气环境研究所联合开放基金项目(2021SYIAEKFMS02);黑龙江省科技厅省院合作项目(YS18Z01);中国气象局预报员专项(CMAYBY2020-035)
作者简介: 任丽,主要从事灾害性天气研究。E-mail:strli@163.com
引用本文:   
任丽, 唐熠, 杨艳敏,等 .2021. 两个相似路径台风深入内陆所致暴雨对比分析[J]. 暴雨灾害, 40(5): 484-493.
REN Li, TANG Yi, YANG Yanmin, et al .2021. Comparative analysis of rainstorms caused by two typhoons with similar path deep inland[J]. Torrential Rain and Disasters, 40(5): 484-493.
 
没有本文参考文献
[1] 郁淑华, 高文良, 彭骏. 2012—2017年不同涡源西南低涡多发的影响因素分析[J]. 暴雨灾害, 2021, 40(6): 577-588.
[2] 刘红武, 李振, 唐林, 唐杰, 苏涛, 姚蓉. 2018年12月湖南极端低温暴雪环流特征及成因分析[J]. 暴雨灾害, 2020, 39(5): 487-495.
[3] 王青霞, 唐明晖, 王强, 蔡瑾婕, 周长青, 邓见英. 2018年湖南首场风雹天气成因分析及预警探讨[J]. 暴雨灾害, 2020, 39(1): 30-40.
[4] 任丽, 孙磊, 张桂华, 白雪梅, 张天华. 一次东北暖锋锋生暴雨的中尺度特征分析及成因初探[J]. 暴雨灾害, 2019, 38(4): 311-319.
[5] 覃丽, 吴启树, 曾小团, 吴俞, 覃月凤. 对流非对称台风“天鸽”(1713)近海急剧增强成因分析[J]. 暴雨灾害, 2019, 38(3): 212-220.
[6] 崔慧慧, 苏爱芳. 2018年初豫南特大暴雪过程的特征与成因分析[J]. 暴雨灾害, 2019, 38(2): 169-176.
[7] 张楠,何群英,刘彬贤,吴振玲,刘一玮,卢焕珍. 非典型环流形势下天津一次局地暴雨过程中尺度特征分析[J]. 暴雨灾害, 2018, 37(3): 230-237.
[8] 郑婧,许彬,许爱华. 远距离台风“康森”与高空西北气流共同作用对大暴雨的影响[J]. 暴雨灾害, 2017, 36(04): 329-338.
[9] 阎琦,孙欣,崔锦,杨阳,赵梓淇,陆井龙. 1210号台风所致的持续性暴雨成因分析[J]. 暴雨灾害, 2017, 36(04): 319-328.
[10] 杨雨轩,张立凤,谢胜浪. 2015年12月广东罕见暴雨的成因分析[J]. 暴雨灾害, 2016, 35(4): 326-.
[11] 田秀霞, 李娟, 何丽华, 范俊红, 李菊香 . 2011年初冬华北南部回流暴雪诊断分析[J]. 暴雨灾害, 2016, 35(3): 243-251.
[12] 姚丽娜1,韩桂荣2,黄文彦1,韦晋3,张静2,曹舒雅4. 台风“菲特”和“丹娜丝”对东南沿海强降水作用的判别分析[J]. 暴雨灾害, 2016, 35(1): 39-.
[13] 顾佳佳,武威. 2014年2月4—7日河南暴雪过程的环流特征及其持续原因[J]. 暴雨灾害, 2015, 34(02): 117-125.
[14] 张宁,张萍萍,龙利民,苟阿宁. 2010年1月鄂东一次暴雪过程中尺度分析[J]. 暴雨灾害, 2013, 32(1): 46-52.
[15] 陈红专, 叶成志, 龙丽华. 2011年1月湖南罕见持续性暴雪天气成因分析[J]. 暴雨灾害, 2012, 31(02): 141-148.
版权所有 © 2011《暴雨灾害》编辑部    鄂ICP备06018784号-3
地址: 湖北省武汉市东湖高新技术开发区金融港二路《暴雨灾害》编辑部
 邮编: 430205 Tel: 027-81804935   E-mail: byzh7939@163.com
技术支持: 北京玛格泰克科技发展有限公司