[an error occurred while processing this directive]
暴雨灾害
       首页|  期刊介绍|  编 委 会|  征稿简则|  期刊订阅|  下载中心|  编辑部公告|  联系我们


暴雨灾害  2021, Vol. 40 Issue (6): 637-645    DOI: 10.3969/j.issn.1004-9045.2021.06.008
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索  |   
上海移动式风廓线雷达的探测性能评估与分析
顾问1, 岳彩军1, 陈浩君2, 薛昊2, 张燕燕3, 孙娟2
1. 上海市生态气象和卫星遥感中心, 上海 200030;
2. 上海市气象信息与技术支持中心, 上海 200030;
3. 上海市宝山区气象局, 宝山 201900
Performance evaluation of mobile wind profiler radarin Shanghai
GU Wen1, YUE Caijun1, CHEN Haojun2, XUE Hao2, ZHANG Yanyan3, SUN Juan2
1. Shanghai Ecological Forecasting and Remote Sensing Center, Shanghai 200030;
2. Shanghai Meteorological Information and Technology Support Centre, Shanghai 200030;
3. Baoshan Meteorological Office of Shanghai Municipality, Baoshan 201900
 全文: PDF (7135 KB)   HTML ( 输出: BibTeX | EndNote (RIS)      背景资料
摘要 基于2018年7月—2019年6月上海宝山移动式风廓线雷达(mobile wind profiler radar,MWPR)资料,从获取率、水平风误差和上海6类典型天气条件下测风数据的可靠性三方面,对其探测性能进行了评估与分析。结果发现:(1)获取率受湍流强度影响最大,受大气温度、湿度影响次之。获取率具有较明显的日变化和季节变化特征,边界层内夏秋季获取率高于冬春季,且有午后获取率高、深夜和清晨低的特点;自由大气中冬春季获取率高于夏秋季。以获取率80%为其业务准入标准,边界层内MWPR的获取率达标。(2)相比L波段探空测风数据,MWPR整层的水平风速均偏小,低模态时有34.4%的数据位于偏小2.0~6.0 m·s-1区间内;风向偏差超过±15°以上的水平风向数据占比为48.9%。(3)定性分析结果显示,MWPR探测到的垂直速度的指向性是合理的。雨强较大时,MWPR探测的垂直速度实际上是降水粒子的下降速度与大气湍流速度之和。MWPR的水平风数据在台风天、雪天等大气均一性强的时段内可靠性高。总体上,上海宝山MWPR的探测性能基本能满足日常监测服务之需,但其测风精度与业务准入标准相比尚有一定差距。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
作者相关文章
顾问
岳彩军
陈浩君
薛昊
张燕燕
孙娟
关键词风廓线雷达   获取率   垂直速度   误差分析   性能评估   上海     
Abstract: Based on the data from the mobile wind profile radar (MWPR) at Baoshan of Shanghai from July 2018 to June 2019, we have evaluated and analyzed the performance of MWPR in terms of acquisition rate, horizontal wind error and the reliability of wind data under six typical weather conditions. The main results are as follow. (1) The acquisition rate is most affected by turbulence intensity, followed by atmospheric temperature and humidity. It is obviously characterized by diurnal and seasonal variations. In the boundary layer, the acquisition rate in summer and autumn is higher than that in winter and spring. It also features high acquisition rate in afternoon and low acquisition rate in late night and early morning. In free atmosphere, the acquisition rate in winter and spring is higher than that in summer and autumn. Taking the acquisition rate of 80% as the operation admittance standards, the acquisition rate of MWPR within boundary layer reaches the standard. (2) Comparing with L-band radiosonde, the horizontal wind speeds detected by MWPR in all layers are relatively low. In low mode, 34.4% of the horizontal wind speed data are in the range of 2.0 m·s-1 to 6.0 m·s-1 lower. The wind direction deviation data which exceeds ±15åccounts for 48.9% of all the horizontal wind direction data. (3) Qualitative analysis shows that the directivity of vertical velocity detected by MWPR is reasonable. During heavy rainfall, the vertical velocity detected by MWPR is actually the sum of the falling velocity of precipitation particles and atmospheric turbulence velocity. The reliability of horizontal wind data from MWPR is highin typhoon, snowy and other weather days with the characteristic of strong atmospheric homogeneity. On the whole, MWPR can basically meet the needs of daily meteorological monitoring and services in terms of detection performance, but there still lies a certain gap between its wind measurement accuracy and operation admittance standards.
Key wordswind profile radar   acquisition rate   vertical velocity   error analysis   performance evaluation   Shanghai   
收稿日期: 2021-02-08;
基金资助:国家自然科学基金项目(41775049,41875059);国家重点研发计划(2018YFC1507601);上海市自然科学基金项目(21ZR1457700);上海市气象局强对流科技创新团队;上海市气象局相控阵阵列天气雷达联合实验室
通讯作者: 岳彩军,主要从事中尺度天气动力学与城市气象研究。E-mail:yuecaijun2000@163.com     E-mail: yuecaijun2000@163.com
作者简介: 顾问,主要从事强对流天气短时临近预报研究。E-mail:adviser85@163.com
引用本文:   
顾问, 岳彩军, 陈浩君,等 .2021. 上海移动式风廓线雷达的探测性能评估与分析[J]. 暴雨灾害, 40(6): 637-645.
GU Wen, YUE Caijun, CHEN Haojun, et al .2021. Performance evaluation of mobile wind profiler radarin Shanghai[J]. Torrential Rain and Disasters, 40(6): 637-645.
 
没有本文参考文献
[1] 傅新姝, 顾问, 彭杰, 麻炳欣, 郭巍, 王晓峰, 岳彩军, 张燕燕, 薛昊. 2020年梅雨期上海一次强降水过程垂直结构的综合观测分析[J]. 暴雨灾害, 2020, 39(6): 658-665.
[2] 王明欢, 赖安伟, 周志敏, 万蓉. 华中区域中尺度业务模式水平风场预报能力的检验评估[J]. 暴雨灾害, 2019, 38(4): 373-379.
[3] 曹越, 赵琳娜, 巩远发, 许东蓓, 高迎娟. ECMWF高分辨率模式降水预报能力评估与误差分析[J]. 暴雨灾害, 2019, 38(3): 249-258.
[4] 杨晓亮,尚可,段宇辉,郭鸿鸣,李江波. 基于高分辨率探测资料的降水相态错报成因分析[J]. 暴雨灾害, 2017, 36(6): 535-541.
[5] 朱传林,李国梁,张弛儿,宋佳军,汪姿荷. 湖北省三维闪电定位系统定位误差仿真分析[J]. 暴雨灾害, 2017, 36(1): 91-96.
[6] 李红莉,张文刚,付志康,周志敏,万霞. 一次暴雨过程的LAPS分析场与多源观测对比分析[J]. 暴雨灾害, 2017, 36(03): 207-216.
[7] 周芯玉,涂静,廖菲,胡东明. 2014年5月23日广州中北部大暴雨过程多尺度特征研究[J]. 暴雨灾害, 2017, 36(03): 235-242.
[8] 肖安,许爱华,陈翔翔. 江南区域性平流雾的物理量统计特征[J]. 暴雨灾害, 2017, 36(02): 147-155.
[9] 王彦,刘一玮,孙晓磊. 利用风廓线雷达资料分析一次强降水过程的风垂直切变特征[J]. 暴雨灾害, 2017, 36(02): 171-176.
[10] 张俊兰, 李娜, 秦贺, 李建刚, 刘晶, 刘雯, 美丽巴奴. 新疆一次暴雨过程的观测分析及水汽特征[J]. 暴雨灾害, 2016, 35(6): 537-545.
[11] 顾宇丹. 上海城市人口密集区强降水积水阈值研究[J]. 暴雨灾害, 2016, 35(6): 590-595.
[12] 史军, 穆海振, 杨涵洧, 马悦, 徐家良. 上海中心城区暴雨内涝阈值研究[J]. 暴雨灾害, 2016, 35(4): 344-.
[13] 胡昌琼,童奇,方怡,刘静,吴立霞. 湖北省荆门市城区新一代暴雨强度公式的研制[J]. 暴雨灾害, 2016, 35(4): 386-.
[14] 彭杰. 上海及周边地区气溶胶对云和降水的影响初探[J]. 暴雨灾害, 2015, 34(4): 324-334.
[15] 王艳春,王红艳,刘黎平. 华南一次强飑线过程的三维变分风场反演效果分析[J]. 暴雨灾害, 2014, 33(4): 305-312.
版权所有 © 2011《暴雨灾害》编辑部    鄂ICP备06018784号-3
地址: 湖北省武汉市东湖高新技术开发区金融港二路《暴雨灾害》编辑部
 邮编: 430205 Tel: 027-81804935   E-mail: byzh7939@163.com
技术支持: 北京玛格泰克科技发展有限公司