高级搜索

基于随机森林的模式晴雨预报订正及检验

Experiment and verification of model clear/rainy forecast correction based on random forest

  • 摘要: 为进一步提升安徽省晴雨预报业务水平,本文基于2019—2022年逐3 h国家和区域级气象观测站雨量观测数据、中国气象局CLDAS-V2.0近实时多要素格点观测产品和数值模式多要素预报产品,首先利用随机森林(Random Forest,RF)算法分季节和预报时效开发了安徽省3 h智能网格晴雨预报产品(以下简称为RF产品);然后计算该产品2022年全年、各季节及不同天气形势下典型个例的晴雨准确率、降水量0.1 mm以上TS评分及预报与实况降水区的重叠面积比,最后与频率匹配(FMM)产品、最优TS评分(OTS)产品及数值模式原始预报产品开展对比评估。结果如下:(1) RF产品24 h晴雨准确率和TS评分均高于其他产品,分别为0.855和0.611;模式预报产品中CMA-SH9预报效果最优,其次为CMA-MESO,ECMWF最差;FMM和OTS产品的晴雨准确率优于ECMWF,但漏报较多。(2) 春季和秋冬季,各产品的24 h晴雨预报效果整体偏好;夏季相对偏差,但FMM、OTS和RF产品较ECMWF有明显提升。RF产品的预报效果在各季节均优于其他产品。(3) 24 h预报和实况降水区重叠面积比的统计结果显示,2022年RF产品的中位值和平均值均高于其他产品,其预报降水区与实况最为接近,能有效降低春季和秋冬季预报与实况降水落区的偏差。(4) 在夏季冷切变线和秋季气旋环流影响下的降水典型个例中,RF产品的3 h晴雨准确率分别在0.8和0.75以上,TS评分最高值分别达到0.55和0.73,优于其他产品,且对ECMWF模式3 h降水落区预报偏差有一定的订正效果。

     

    Abstract: This study aims to improve clear/rainy forecast accuracy in Anhui Province. Using 3-hour precipitation data (2019-2022) from national/regional stations, CLDAS-V2.0 multi-element grid observations, and numerical model forecasts, we developed a 3-hour smart grid forecast product (RF product) with the Random Forest (RF) algorithm. Seasonal variations and forecast lead times were considered. The RF product was evaluated against frequency matching method (FMM) products, optimal TS score (OTS) products, and raw model forecasts using three metrics: clear/rainy accuracy rate, TS score (≥0.1 mm), and precipitation area overlap ratio. The results are as follows. (1) The RF product showed superior performance. Its 24-hour accuracy (0.855) and TS score (0.611) outperformed all other products. Among models, CMA-SH9 ranked first, followed by CMA-MESO. ECMWF performed worst. FMM and OTS products surpassed ECMWF in accuracy but had higher miss rates. (2) All products achieved better 24-hour forecasts in spring, autumn, and winter. Summer forecasts showed larger errors, but FMM, OTS, and RF products significantly outperformed ECMWF. The RF product maintained consistent advantages across seasons. (3) The RF product achieved higher median and mean overlap ratios in 2022. It best matched actual precipitation areas, particularly reducing position errors in spring and winter. (4) Two case studies demonstrated the RF product’s strengths. Under summer cold shear lines and autumn cyclonic circulation, it achieved >80% and >75% 3-hour accuracy respectively. Its TS scores peaked at 0.55 (summer) and 0.73 (autumn), outperforming other products. The RF product also effectively corrected ECMWF’s 3-hour precipitation location errors.

     

/

返回文章
返回