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Advances in the studies of turbulence properties in the cloud and the

role of turbulence in cloud and precipitation
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Abstract: Turbulence is an unregular atmospheric motion. Through increasing the collision efficiency of cloud droplets and accelerating the
growth rate of cloud droplets, it plays an important role in the processes of cloud and precipitation formation and development. The studies of
turbulence in clouds during recent decades are summarized in this paper. This paper mainly introduces the research results of the collision
and growth of cloud droplets as well as the micro and macro characteristics of cloud structures. The contents in this paper are expected to im-
prove observations and research on cloud dynamics processes, turbulence—cloud microphysical interaction theory, and optimization of cloud
parameterizations.

Keywords: turbulence in the cloud; warm clouds; cloud droplet; collision efficiency

PR BRI AE , A AW B 1 IR SR B
St 20 22 70 4RAUG , BEE R BAR B R T,

51 &

it e — e BE A2 AR = HEARES A IR A
RS o AR, AR B 25 ol ) B 2 JCn o
Fe 3 it B2 SR BE N ] 55 25 18] & AR FEATLAY S L . 1904
AR, Prandtl $2 T IRA K HNE BT S B A (19 U
PHEIEA . 5T 60 a, [ A2 i e HE T
B SERIR T U RE RS RS i A AR L A X

Fa A 2022-10-05; EF5 H #5:2023-06-23

(2019QZKK0104-02-07); 7 & FI SRR #5435 H (2023AAC03800)

Il AN S I I T 22 R i D WL N 3, X6 e |
WA e D PSRN TR S OR DL T TIRA
WRIT, fa/R TR BIRAE R 5 k8 RO s Bl ey
T LT RZ MR, SR T XA TR 48 K AR 1R
AR, [ 2 i i 78 2 FIRE K iR & Jsd e v
EE o E IR GRZE A ,2014), A4 IOk

E—1EE . W&, FENFREWE LN TSI . E-mail:tianl419@163.com

BIEEE:

Fise, FEME TSRS . E-mail:8633204@163.com



500 TR E

B2k

5 B 2R 3 R A 18 AL R RS2 2L R IS BE
S5 A% BT EE S YGRS 2 T T RR T A S S )
PRI s = th W TR 4G AR R B R I R R T
T2 12 S A S A 2, i B2 2= il
JEE I SR 20 Bl , DT (9 1 A A A A AR
K 2% 5 (Grabowski and Wang, 2009). i it — % A H.
VE 2 = W B AR A 5 By BOCRL FAE R iz
BT 2 PR 1 A 1) S B R ) [l F- 2 — (Eames , 2008 ;
Devenish et al.,2012; Rosa et al.,2013),

it L2350 T RO B =T S5 R LA
REFRHE, Bl RS el i S A e E
FEAH X (Smith and Jonas, 1996; i BFAAFIAINESE , 2021),
TE AR = AT T 3 A0 R0 3 AR R A= A I ) A
B, 30 3 AR BE LS AR AR ME ™ 2 AR 4T 20 pom Y =
T, T 2 10 B RO W AR IR 2 40 wm B4
AR ARME R TS 2 AR 15~40 wm 38 il A 9 PR
H K (JA 75 5, 1963 ; Brenguier and Chaumat, 2001); 73
S IEE NN B E B Z PO B E 1~2 km ) ==,
FE 1 h 2247 SERETE UK, 1T HL R AR FRAR A, 7RV R
= A I RETE 0.5 h 24T SERETE UK, iX S G
TNANZE BE i it 14 2 Wi G BPRAR R Y o PRLIG, BF 9
i 8 78 23 T AR B E DY T AL = P i = I i
AL AR ftAF H 8 % (Lau and Wu, 2003) , A 1 148 i 9t
XoF VTR A K ) 5 ] 2 25 R B AR ) Bk —
(Shaw et al.,2002; Boutle and Abel,2012), 5 4b, % ¥
X AE 2 P AR TR P E AR G — W HAE =
TR R ) ELASE e 1 AN 43 BT (Lu et al.,2018).

H T RN PR 2= v i SRR B2 HON 2 B K 1 5
i) , AR SCRAZ T T 5T ik e A 250 , LA Dy itt— 2D B
i 2 B ) R S i i — 2 G A AR RS
HAHUHE 7R I 2 [R) A (] RUBE B i i — 2=
HEAEH AAEAE R AR AR U P 22
B 2 B B8R 2 ez i i W A o B it
B2 T 60 adfe, [E N AN ETE 2 Thim i ARAE B H
TE =K B ER T AV R, LRSS AT .

1 ZHimREERT R

H 4R 2= FREE i it s 23 B AR AR K BB B &
T 52 55 % BB SR TR B U E 1 = 25 A
H 2R 7 A HEIS AP AE 3K 22 57 (Siebert et al., 2010), K it
WEMBIFSE 2= i i A At B AR R B

Dmitriev 55 (1984) i 1 €AMW 58 T 4% Hrdt
TR = b X R S 4548 L & B T i Ui X )
(] B X3 0 B2 37 10 A 187 5 M 5 1 3549 i i 54 B 7
Ay F=aa ik 115 3 NI Sl s 1 O i B2 /AN

WM 5 2 i I DX AR~ 2 B Ol 40 ke, 1 Y 2%
74 60 km s SR (100 m~1 k)T 1 38 3 1) 4%
PP =573 HOREHE 5 T AT 5 HA 2% ) 45 o) S 1 )
M5 Quante A1 Brown(1992)38 i "W HLWIN A 58 1 1
B m M2 = P m i R, KU AT A
i) Richardson %5 bl 5 & i A8 AL AR K, HABAR T 0.25 19
i FHE , KW = PR RRZ . ERRE TR
L7 LN ) 0 e Py 22 M A R RO T 4 2 v
AR TSR SR 8 i Y 1 B8 ROBEAEA ] X8
AEARAR K . XFF/INF 500 m B9 RUEE i i X 2 XU AR
HEZE 57KV G BR 22 1Y FUAE R 0.8, T E 25 XX — L
B} 0.5, i it X Y RE SR FE AR 20 2107 m® -7,
Fa X ) BB i AEHL R 5 /N o Spyksma FI Bartello(2008)
WFIE R B, T SRR 25 O A i U R AIE AL TT RE A
TEANAN 22 5 0 T3 Ab i U o B DX 2= 1) 2 U 0 A4 oy
WA AR KRRAF . 722 AR Yy
107 w7 N H i AR HCR 2 107 m? - s
(Mazin et al., 1984), TETRIE R 2 v, LI A4 T U 6
B A 1K 0.2 m?- s(Weil et al., 1989), Hsieh %5(2009)
W R i AR AR b R 9 2 KAEA
P s e AR R . Siebert 25(2006a, 2006b, 2010)F]
FABLZ 2 WL 22 58 (A CTOS) FE LI 5% /N 2 AR 254
(B4 SR RS 7 B Ry T 1 R (181 1), 55—k
ST 2 v NS i U LA R 2 T B 1) AT
W WEMAH R, 2= A CP Y Tmim A B 23 51 107
107 m’« 57 AR = AR R =) N A i o i 3 4 i e e
Yy [l A s B R - Matthew 5520158 5
A AR B, T i 2= e AN ST, = sl <,
TE1~10 mm RUE FATA ZURI B3 o W Y /N3 A
TR BRI AR BAR L AE .
Kollias 1 Albrecht(2000) ] FH 2 ELH5 6] 4 3 mm i
KZEEE B, 50 7 REZ 2 i i RO i 5
HREEZEH e PR EE MRy 22 AR )2 B —
A B IIE(E 0.7 m* -+ s7), 7E = J2 P bt fs — N IE(H
(02 m’s7?), Parameswaran 2§ (2003) ] F PR OG5 1A
F1 MST(Mesosphere Stratosphere and Troposphere) t 15
WFFE T I X2 T0UT B B ¥ U 2= 0 R i ¥t L &
PR 23 1 ) BRI ' 2 A 1 28 B L B A 4% B ] A1 2% [
WRPE, =~ Kimiid S E E E A RS P
PR E IR IESNE . RIAZEF(2008) B Hh 7EA ) 56 2
fin i AT TR RAL R A 2B B2
S UP N B W ER e [ RS/ s A Ee e = e [1]2
SEZR O FR M H 1 T8 HE AT B i it 5
Benmoshe Fll Khain(2014)#5480 & BH, 1R -G AT 2= i
D9 B B i B 8 23 AT ARAN I 5 it I A AR S A H



I, 45 : = AU IE SR 2= oK P BT T e 501

Deflected downwash

P 1 L3 2 i U 28 42 (D7 P KU, @B U E RS SR Sk , @2 AR T, @i o RIRE s , @YU,
O TR, DNevzorov #k , @ TR 2L, QR EBER1F) (a) B HAE ETHIL_E 1B 20 (b)/R 2 (Siebert et al.,2006b)

Fig.3 Sketch of the Airborne Cloud Turbulence Observation System (D Sonic anemometer,2) M—Fast Forward Scattering Spectrometer Probe,

(3 Phase—Doppler interferometer,@ Impactor inlets,® Ultra~Fast Thermometer,®) Particle Volume Monitor,(?) Nevzorov probe,

® The main body bracket,9) the tail unit) (a) and its suspension mode on the helicopter (adapted from Siebert et al.,2006h)
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Fig.3 Schematic diagram of the observation station and its observation equipment(a:The picture shows the UFS partly immersed

in clouds.b:The observation equipment layout diagram ) (adapted from Siebert et al.,2015).
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