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Quantitative analysis of water vapor budget of a persistent rainstrom

event in Tongren of Guizhou Province
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Abstract: This paper focus on revealing the features of the water vapor transport, water vapor budget and the contribution percentage of wa-
ter vapor source regions of the persistent rainstorm in Tongren from July 13th to 16th, 2014 based on precipitation observation data, ERAS
and NCEP GDAS (National Centers for Environmental Prediction, Global Data Assimilation System) reanalysis data and the HYSPLIT4 (Hy-
brid Single—Particle Lagrangian Integrated Trajectory Model) mode. The results show that: (1) the eastward South Asian High and coupling
mechanism of high and low level jets enhanced the dynamic mechanism of convergence at low level and divergence at high level which is
conducive to the convergence of water vapor in the target region to condense and then form precipitation. (2) The water vapor over the ocean
was continuously transported to the rainstorm area by the water vapor channel built by the synergistic effect of the subtropical high which ta-
ble controlled the south of Guizhou province, shortwave trough lay the northwest side of subtropical high, and tropical cyclone in the Indian
Peninsula at 500 hPa. (3) The air particles in the rainstorm area mainly came from the Arabian Sea, the Bay of Bengal and the South China
Sea at a lower height, while a few particles came from the north of Tongren to Eurasia, the Atlantic Ocean at a higher height by 120 h back-
ward trajectory simulation. (4) The contribution percentage of water vapor source regions of the south of Tongren—South China Sea and its
nearby islands and water, the east of the Indian Peninsula—the Bay of Bengal, the Arabian Sea—the west of the Indian Peninsula were
48.29%,32.17 % and 10.47% respectively. In addition, the water vapor the north of Tongren to Eurasia and the Atlantic Ocean also contribut-
ed to the rainstorm in Tongren (9.07%). (5) 850 hPa and 700 hPa were the main water vapor contribution levels which provided nearly 3/4 of
water vapor to the rainstorm area, the remaining quarter was transported by 500 hPa.
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FeIl KPR BE N R W R AR kSR AR E L
Flb. BWEA , AU BRI XA KA
Tt T BRI SR 4 K RN W b 1)
TR TR DXk I 7 AR Ry AR G (B RF 75, 1980) , AL 7
RIS — ERRREE NI R RN, EF
AL N ES BN T R T o S € A B e o S R S i
TE 43 ) T 2 XU ) 1) TG e A e T R XU
1) T Ve 300 T A ) SR 2 XU ) 7 R R L E | 7R R 4
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5.2020; FAREE,2022), Bl XF oK P H % i gE 3
BT WP 7 % 0 A K R ik
Xof 2 W A LA BT R DR I — 2 3 R P R T R A B
H J7 ¥ 19 HYSPLIT4 (Hybrid Single—Particle Lagrang-
ian Integrated Trajectory Model)£5 2 o 2 WL 1R 51 7K 1%
U5 M 2 AL TE A PR DTk . A A AR (2015) 4
JERAESE T DU 41 B 2 5 W ) K PR AR IR A OO L 4R
950 hPa 114 7K VR U5 Hb A7 DU A, o Hp BT 7 47 — o
LV b X4 7K PR 2% DT R R (44.1%), R B -1
T 1, X %) 7K YR 5T BR IR 2 (33.1% ), B IR W A1 T8 s 1X
(15.7%)F01 U105 38 81X (7.19%) A 7K 75 53 BRAH X 4255
850 hPa A PUANZK PR , BT Fir A VAR b X 9 K PR e B
L(89.4%) , M\ B IR W& A0 — DL 7R 80 ok (1) 14 25 AR
XFH555(6.3%) , T da MLV (3%) MR B (1.39%) K I BTk
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T4 P RS K PR R R ET R 2 B2
(JEIE R4, 2008 ; fitiif ,2022).

A=A T BN AL, BBl DX b, 7Y & AR
i, 2 — g b ) ) SR AR L TR

2572 mo ZAEA ILBEAY , Y R)Z A7 I A S, A
L AN A AR R R K (MR 246, 2020) , AP g KUK
VR X0 5 A K ok R A S I (SR R 4, 2017 B
HEREEE2020), DAAEXHR 2 B9BF 9T S EAERLER
SITE 5N % ) (RS, 20205 3% =%,
2021; 4 #E4E,2016,2021), 11 &1 X 7K 75 5 12 A5 AE A 5
25 R I BF ST R D . 2014 4E7 F 13—16 H A H
PREFSE MR, SRR T 8O 2 A X B R A kT Iy
B SR TLT K Rk, AL AR DR AE 152, 22 2% iy 20 I G
PAT TS K % v T (B /N2 25, 2016), 88 8™ B Y 28 0%
PR o ARSCAHT T BLUR R I R R I R S KT
ERHE , T HY SPLITA A5 A 7 7K VR U5 b e 45 15
Hi TTHR , DA IR i 4 2 B TR AL AT, 4R
A AT R AR SRR T, S B i A A T
V55 KR 55 i SIS 2 AR .
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1.1 F#HERA

f FH 8080 A5 = (1) SRR 181 Al s (fu %
I 3¢ ol 0 DX g oty ) 328 /)N NF B2 7K TR 5 (2) RO v A
KA 0 3 AR IR 23 BT B0 42 (ERAS) , 2
T Y R A KT BEAE R 0.25°%0.25°;
(3) NCEP GDAS (National Centers for Environmental Pre-
diction, Global Data Assimilation System)4=ER P43 HT 44
B, ) 3 BEA 0 6 h, KF23BEA 0 1.0°%1.0°, B BT
] 2 17 J2(1 000—10 hPa), Ak FE F HYSPLIT4 1=
XA A IR 5 (4) 2 BR 1 km BERE SRR ETO-
PO2V2 TR , A5 56 [ [ S AR U B
(National Oceanic and Atmospheric Administration, NO-
AA) ifi(https://www.ngdc.noaa.gov/mgg/topo/topo.html) ,
DA F B eI B Ry 2014 4E7 5 13—16 H .

1.2 HYSPLITA K R AT 5

AR Al T 56 ] ) GV R AU B Ry 25 AR B U
BN DN IRIARE 9513y yod b S R g i
7 331 5 B9 HYSPLIT4 #5% 3 (Draxler and Hess,1998).
HYSPLITA4 5 3 M Tt e iy S AR e 2= P Y
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PR AR AR, S A B IR 7 B RS — S L
B IRAE (Draxler and Hess, 1998).

IR ST A ZR T BE (201447 A 13 H 20 B+
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BWH R 107.5°—109.5°E, 27°—29.5°N, /K43 HE RN
0.5°x0.5° AU 45 (8] Y B0 & s A 304> FE ELJT [0]
E#EHC1 500 m (850 hPa).3 000 m (700 hPa)#15 500 m
(500 hPa) A BAPL AR B i B2, B B T A 2 AR
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Fig.1 The spatial distribution of accumulated precipitation (unit: mm) in Tongren (a) from 20:00 BT 13 to 20:00 BT 14, (b) from 20:00 BT
14 t0 20:00 BT 15, (¢) from 20:00 BT 15 to 20:00 BT 16, and (d) from 20:00 BT 13 to 20:00 BT 16 July 2014
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P AU B AR BB R A, A
850 hPaffil{ - Hdt B fAEAEmE X VI AL (15 2d L)

120 135°E 60 75 90 102 120

22 — T T 4 ;
100 102 104 106 108 110 112 114°E100 102 104 106 108 110 112 114°E100 102 104 106 108 110 112 114°E

-0.5
-1
-1.5
-2
-2.5
-3

il - o Eanaudt 1
..— ")
=
AL 7
;
NATS
£ ny BTN

o ‘ =)
.ﬁ (DS 73 %

2 : : )
100 102 104 106 108 110 112 114°E100 102 104 106 108 110 112 114°E100 102 104 106 108 110 112 114°E

B2 201447 H 13 H 200f—14 H 200 (a,d, g). 14 H 200f—15 H 206 (b, e, h) .15 H 208f—16 H 20} (c, f,i) 200 hPa
i) (=30 mes™, ZLEARELR) | B i L (i (U RE LR, 07 gpm) BIURE(BRE , B02: 10787
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Fig.2 (a—c) Zonal wind (=30 m+s™, red dashed line), the south Asian high (blue dashed line, unit: gpm) and divergence (shaded, unit:10~s™") at 200 hPa,
geopotential height (black solid line, unit: gpm) at 500 hPa. Wind field (wind barb) and divergence (shaded, unit:10”°s™) at (d—f) 700 hPa and (g—i)
850 hPa (a,d, g) from 20:00 BT 13 to 20:00 BT 14, (b, e, h) from 20:00 BT 14 to 20:00 BT 15, and (c,{, i) from 20:00 BT 15 to
20:00 BT 16 July 2014 (yellow solid line represent shortwave at 500 hPa, the double solid lines are shear lines)
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Fig.3 The vertically integrated of water vapor flux (a, c, e, shaded, unit: 10 kg-m™+s™) and water vapor flux divergence (b, d, f, shaded, unit:10 kg-m=-s™)
(a, b) from 20:00 BT 13 to 20:00 BT 14, (c, d) from 20:00 BT 14 to 20:00 BT on 15 and (e, {) from 20:00 BT 15 to
20:00 BT 16 July 2014 (the blue line represents the feature line of 5 880 gpm at 500 hPa)
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T EL A (L kg - s AL PSR (LD B FT SRR ATRRA ), IE() 5 FR K IRTA ()
Fig.4 Vertical distribution of water vapor transport of (ai—c;) 500-300 hPa, (a;—c,) 700-500 hPa, (a;—c,) surface pressure to 700 hPa and (a,—c.)
the whole air column across the four boundaries of the Tongren (unit: kg+s™) (a;—as) from 20:00 BT 13 to 20:00 BT 14, (bi=bx) from
20:00 BT 14 to 20:00 BT 15 and (ci—cs) from 20:00 BT 15 to 20:00 BT 16 July 2014 (The green (red) arrows indicate the water

vapor influxes (outfluxes), the positive (negative) numbers indicate net water vapor inflow (outflow) at different layer)
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Fig.5 The spatial distribution of height (ai—as, unit: m), specific humidity (bi=bs, unit: g-kg™) and relative humidity (ci—cs, unit:%) of the air

particles 24 h backward trajectory simulation at (a;—c) 850 hPa, (a,—c,) 700 hPa, and (a;—c;) 500 hPa during the rainstorm process
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Fig.9 (a) The distribution of four water vapor source regions and (b) the contribution percentage of the these water vapor source regions to rainstorm in

Tongren (A,B,C and D represent the Arabian Sea—the west of the Indian Peninsula, the east of the Indian Peninsula—the Bay of Bengal,

the south of Tongren—South China Sea and its adjacent islands and waters, and the north of Tongren to Eurasia, respectively)
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