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Study on the simulation experiment about initial condition perturbation
construction for convection—allowing ensemble prediction

system in Inner Mongolia

JI Yanxia', SUN Xin', ZHANG Hanbin’, ZHAO Fei'
(1. Inner Mongolia Meteorological Observatory, Huhhot 010051; 2. Beijing Institute of Urban Meteorology, CMA, Bejing 100089)

Abstract: Convection—allowing ensemble prediction (CAEP) is an important approach to improve the capability of strong convective weather
prediction, and how to construct reasonable initial disturbance is one of the key issues of CAEP. In this paper, the experiments of the per-
turbed—observation (PO) method in the CAEP system in the Inner Mongolia region were carried out and evaluated by comparing them with the
downscaling (DOWN) method. The performance of the PO method in the CAEP system was then analyzed, which will provide a technical ref-
erence for the construction of the CAEP system in Inner Mongolia. The results are as follows. (1) The initial perturbation constructed by the
PO method can effectively include the observations in the Inner Mongolia region, which can reduce the uncertainty of the background field
and the perturbation has sufficient growth capacity. (2) Compared with the DOWN method, the PO method can significantly reduce the
short—term forecast error of CAEP. The root mean square error (RMSE) of upper—level elements is reduced by 4% ~43%, and the RMSE of
ground surface elements is reduced by 3% ~9%, suggesting a slightly decreased ensemble spread. The continuous ranked probability score
(CRPS) of upper—level elements can be reduced by up to 53% and the CRPS of ground surface elements is reduced by an average of 6%, which
generally indicates an improvement in the quality of convective scale ensemble forecasts. (3) The PO method can also improve the capability of
short—term precipitation forecasts. The TS score for precipitation levels of 0.1 mm, 4 mm, and 13 mm increased by 0.015, 0.003, and 0.0015, re-
spectively. Furthermore, the case study shows that the PO method is more accurate in predicting the precipitation areas and intensity levels.
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Fig.1 Simulation area of convection—allowing ensemble prediction system.
The purple lines mark the administrative city boundary of

Inner Mongolia, the same hereinafter
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Fig.2 Framework of convection—allowing ensemble prediction system
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Fig.3 (a) The 500 hPa geopotential height (black solid line, unit: dapgm), 850 hPa wind (wind barb, unit: m+s™) and 850 hPa specific humidity (color—filled,
unit: g+-ke™) in Inner Mongolia at 00:00 UTC, (b) composite radar reflectivity from Wulanchabu weather radar (unit: dBz) at 06:00 UTC on 11 July 2020
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Fig.4 Vertical distribution of the spread of u component perturbation of the wind field forecasted by (a) DOWN
scheme and (b) PO scheme at O h, 6 h, and 12 h on 11 July 2020 in Inner Mongolia
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Fig.5 Spread of 850 hPa wind field at (a, d) O h, (b, e) 6 h and (c, f) 12 h simulated by (a, b, ¢) DOWN scheme and (d, e, f) PO scheme on 11 July 2020
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