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The role of gravity wave in a nocturnal mountain rainstorm

in the northeastern Sichuan Basin
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Abstract: Mountain gravity wave characteristics are important for analyzing the nighttime heavy rainfall events occurring in Sichuan. Based
on the GPM satellite precipitation data, FY-4A satellite cloud data, and ERAS reanalysis data, we analyze the mesoscale characteristics of a
nighttime rainstorm with a gravity wave that occurred on 10-11 July 2018 in the northeastern Sichuan Basin mountains. The results are as
follows. (1) The oscillatory feature of cloud water content and the wavelike variation of the potential temperature field reflect, to some extent,
the influence of the fluctuations on the mesoscale system. (2) The fluctuation trends of wind vertical shear index, thermal helicity, and mois-
ture helicity appear during the development of waves, indicating the characteristics of gravity waves. (3) The areas with large values of wind
vertical shear index, the extreme center of thermal helicity, and moisture helicity are consistent well with the heavy precipitation regions. (4)
The gravity wave may be formed by the interaction of topographic disturbances, shear instability, and non—geostrophic equilibrium, which en-
hance the rainstorm. The regions with a small value of the Richardson number and a nonzero value of the nonlinear equilibrium equation can
indicate the location and movement direction of the rainbands. Diagnosis of Richardson number shows that the vertical shear instability is
formed before the mesoscale wave is excited, but it decreases with increasing fluctuations, which indicates that part of the energy of the
waves comes from the unstable flow.
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Fig.1 Spatial distribution of the topography (gray shading, unit: m) and
distribution of 24 h cumulative precipitation (colored—filled, unit: mm) on
July 10, 2018. R1 (104.06°E, 30.67°N), R2 (104.73°E, 31.94°N) and R3
(105.82°E, 32.44°N) indicate the centers of large values of precipitation,
respectively. The blue box shows the precipitation concentration area, the

same hereinafter. The black line AB represents the fluctuating

characteristic lines (A (102.5°E, 29.2°N), B (106.0°E, 32.4°N))
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Fig.2 Hourly cumulative precipitation (unit: mm) from (a—i) 23:00 BT on July 10 to 07:00 BT on July 11,2018

60°N 17

50

40

30

20

P ke

80 90 100 110 120°E

—8m-s"

28

24

95 105 110 115°E 95 100 | 110

50 60 70 80 90

1000 2000 4000 6000
3 20184F7 H 10 H 08 i 500 hPa (a) .850 hPa (h){y # i B 3 (s (0 55 (2R, B : dagpm) AR (57 3% BT mes7),
77 11 H 028 700 hPa KU FIABXHE S (S, 5407 %) (c), 850 hPa KU FIHBIE (JE A, A7 : m) 7371 (d)
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Fig.10 Cross section of cloud water content (colorfilled, unit: g+kg™) and potential temperature (brown isoline, unit: K)
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