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Abstract: Jiulong is located on the east side of the Qinghai-Tibet Plateau (QTP) and is a region prone to southwest vortex. Cloud detection
with new—type detection equipment in this region helps enhance the knowledge of cloud characteristics in the southwest vortex—prone region.
In this study, based on the ground—based microwave radiometer data from June to August of 2018-2019 in Jiulong, the observational charac-
teristics of cloud occurrence frequency (COF), liquid water path (LWP), and supercooled liquid water path (SLWP) for non—precipitating
clouds during the summer seasons are investigated. The results are as follows. The monthly average COF of summer non—precipitating clouds
in Jiulong is between 67%—-82%, with low and middle clouds being the main types, and high clouds being less common. For low clouds, the
COF is low in daytime and high in nighttime, while it is the opposite for middle and high clouds. The vertical distribution of COF presents an
unimodal pattern, with a peak of 8.1% at a height of about 2 km. Due to the diurnal variation of atmospheric thermal stratification, the uni-
modal pattern of COF shows diurnal differences. Moreover, the average LWP of summer non—precipitating clouds in Jiulong is 0.433 kg+m?,
with the average LWPs of low, middle, and high clouds being 0.665, 0.240, and 0.102 kg m™, respectively. The diurnal variation of LWP in
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low clouds is similar to their COF, while the diurnal variations of LWP in middle and high clouds are not significant. Additionally, the aver-

age SLWP of cold clouds among summer non—precipitating clouds in Jiulong is 0.154 kg+m™, with the average SLWPs of low, middle, and
high clouds being 0.065, 0.166, and 0.102 kg m™, respectively. On the whole, the proportion of SLWP in LWP is about 34.3%-38.8%. The
proportion of SLWP increases with the height of the cloud, which makes the diurnal variations of SLWP in middle and high clouds similar to

that of LWP. Compared with central China, the characteristics of summer non—precipitating clouds in Jiulong are significantly different, and

this is closely related to the different characteristics of atmospheric water vapor between the two regions.

Key words: Qinghai—Tibet Plateau; southwest vortex; non—precipitating cloud; cloud occurrence frequency; liquid water path; supercooled

liquid water path
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Fig.1 Geophysical location of Jiulong station (white dot) and

its surrounding terrain (shaded)
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Fig.2 (a) Scatter plot and (b) deviation profile between ground—based microwave radiometer and GPS sounding temperatures

in the cloudy sky at Jiulong station from June 15 to July 31 of 2018-2019
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Fig.3 Occurrence frequencies of different sky conditions at Jiulong

station during June to August of 2018-2019
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Fig.4 Diurnal variation of cloud occurrence frequency for non—precipitating

clouds at Jiulong station during June to August of 2018-2019
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(b) at 04:00 BT and 14:00 BT in summer at Jiulong station during 2018-2019
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Fig.6 Liquid water path of non—precipitating clouds at Jiulong

station from June to August of 2018-2019
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M5, K = RS K B AEBIEZ) 4 0.433 kg-m™, Tfi
Rz B B RS KB AR SE 53 129 4 0.665
0.240 F10.102 kg-m™.

P 7 45 H 2018—2019 4F 6—8 A JLle i kK =
MR AR B AR, AT AR = RS K i HAT
F R /I ) K H SRR, H H 22 Ak i I8 sl v [
40.372~1.230 kg - m™, 5o/ IME H P 11 BT 5 R AR HS
A 180F . HIRA AR, = MR A KR H ALY
TEANER , H2Z AR, I sh R RN, i sha
0.152~0.394 kg-m™, Fe/ME H ILALE 05 s 171 e KA H 3
020 MRA/K AR 5 b = AL, AR B H B
0 H A B RRAE B 2 iR B B B S R
0.060~0.198 kg m™, $5z/IMELH BETE 00 Fof 17 5 KB H 2R
190, XA AR K AT S HIR KSR H AE
FE SR AL, UL = i ol 2. IR
PR K BE AR H AR RRE 5 1 4 8 IR 2 H B 1Y
H AR PR AE AR 7 19, BRAEG 25 PR BLRAR RS
K BEAR /NI (] 3 B 6 S /K AR K, P 43 )
NZ R AT K i S e T e A R T
TR TE] P V2 1 RS A L 3K R T 9 o it TR 198 & A 4
HET R AF B R R SR (A EF, 2002) J34b,A
R T, V0 R R ] & AR B8R T 1 R (B 5t
Al 3, 2008) , 1 H.-5 74 R i 25 U A SC H EE J7 i
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Fig.7 Diurnal variation of liquid water path for non—precipitating clouds at

Jiulong station from June to August of 2018-2019

2.3 A =R A KR EEHE

RA M A TE SRR G A G T AE B 252, N
SRR A AH 2 Pk R K BB B T IR A PR = Y
TS FIR 457 (Sun and Shine, 1995; Luke et al.,2010).,
b AR 8 S AT LA 2 S T AN = S K A%
R A TR R K AR R AL T — AT B i HL
iy Bl 0t 5 SRR A 5 VA AORT B 5 3 v K R B
B Ak BORS BE A 24 (Ware et al.,2003), T Hb 343000 4
ST 2 TOO B A ER I B |, DALk, A SO 2= 1S
TR AR AN AR K = AR =, Bl = IR E A
T 0~-40 CZ W = , I 4 iR B = i ¥ K
PEARIRAE

8 JE R T 2018—2019 4 6—8 H JLIE i JERE K
R K RN ZEA B, TTILTER S
(R VR K I A% 28 ] 5 ST 161 R 0.134~0.171 kg-m™, 1
KAEHIAET H e/ MEHITES H . H AR =15
IR, B R K R K T =
XU = T8 2 IR AL, T Hoad v K 2 81
TEHR =W o MKz 1 ¥ 7K 42 0% s v [l R 0.042~
0.079 kg~ m”, e KAEHBET A e/ MEHBIAES H .«
H 25 (R VR K AR 1328 H AR AR R IR S A 2 AR AR, U8 3
JEFH 0.140~0.181 kg-m™, e KA HIAET A, &/ME
HITE 8 H . & = it v K AR I Sh9E M 0.081~
0.116 kg-m” e RAE AL T SR/ MEHEAE6 H o
XA M, K = e = i B K s AR 5
299 0.154 kg-m”, MKz H = & = LR K 12
BHE ST 53254 0.065.0.166 F10.102 kg-m™>. F 4, %f
Fb & B, 1 V8 7K A R AS /K B A ELAT AL B9 32 ] AR

FERRAE , T HL & 2 1 A K B AR B 5 RS /K B2 5
EAHTR (& 6.8) 2 145 H Uk B 2R K 20 s
IK AR Rt A K AR G 5 L AT I RMA AR K B T
ARV K B AR B (Y HL 208 34.39%0~38.8% . 73
Ab Ve KA o R 2 1 5 B TR K AR 9 5k
WA, 48 7.5%~109% , F = IR Z , 29N 66.5% ~
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WAKEEIR K, BRI T A X8 7K

YA RS A
0.30F ‘
-
(=] E@:f
0.25¢ -s
[ iEEpSN
£ 0.20f
18]

/(k

M .15}

IR

< 0.107
o)

?

0.051
0.00 6 7 3
Ay
% 8 2018—2019 4 6—8 H JLE iRk = i = )
PURLYI N2

Fig.8 Supercooled liquid water path of cold clouds among non—precipitating
clouds at Jiulong station from June to August of 2018-2019
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Table 1 Proportion of supercooled liquid water path in liquid water path
for non—precipitating clouds at Jiulong station from June to

August of 2018-2019 (unit: %)

Ay = = Mz Pifi =
6 10.2 733 100 343
7 10.9 66.5 100 343
8 7.5 67.6 100 38.8

LB E B AR K = e = i K k2 H
AT B, BRAR A1, v FEs 2 B9 38 7K
AR B AR AL 5 FORCS K AR AR AL, BRIV 2R AR X /N
A AR A, Hop = 3 ¥ K 4 K F 8 o (B
9)o IXJEH N 2 Fl R 2 A TS K A2 v e VA K
705 P, 8 A5 G Y AR Ak AT I B AR AL
T3AN ASOR 2 R T B R S VK B A, 32 A
H AR bS5 145 2 AR = i A K 42 2
PUAE 00—13 B, ifif ELid ¥ /K B2 B B/ Frp =, Bk
Fl e E SRR A, BT s A
KRR FE KSR = R K ik H AR
b F 82l KA RS, B S h s H
AEAVARAE
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035 Thas HEF b SRR T 2 BRI RE 7, Xu %(2021)
~030 ks FIUFH 6 a ML MBI T IOR AT T4 i K JE ek
%025 BB RE . BEA ST T 45 3 5 Xu 55(2021) 1 45
€ 020 SR H R B, FUI S AR K 25 B (67 %~
Z% ols 82%) Ik THE Hh 1B IX (83%~95%) , Horh LA = IR
EE 010 (28%~43%) 1% {7 T 1 HH B X (13%~28%), I JLEH =
005 B #4(30%~35%) (I T A HILIX (319%0~53%) , i 3] 2
U 8 7 th B3R (5% ~6% ) 3% fI T4 Hi X (21% ~
P00 oo o8 10 12T e T8 2022 439%). ISRy 2R R UK AT, UK
149 2018201945 68 7 Ul B A 2 29 T, A oy B, S MR BHETE U Wang, 2013).
A KB A H AS AL, e v DXL ARG T e D, RIS i L7

Fig.9 Diurnal variation of supercooled liquid water path for cold clouds
among non—precipitating clouds at Jiulong station from June

to August of 2018-2019
3 ifig

by B8 B S G 2 R TR £ TRT, m] LA
WS KA SRR S R BRI, 45 A R0k
S SR T 5 T 30 R B 4 T A AR S RS S X L £
JE , HEITASE] 235 5 (Ware et al.,2003; Xu et al.,2015),
DRI IHL b Gl UBt S 1A 0 2 DG vy g EL I e Py U
JERERAERR R DIAH OC . ARSCHER] 2 R T M SEf
FRPTELE 5 CPS ¥R78 E BATARGF A AH M, P
(RAH SC R BGE ) 0.99 DL b P4 2504 0.1 CL ¥
2258 1.2 °C, 3 U5 B IR b B B 8 0 3 1R R B 4
IRT T35 1 2 IS i BE IR 257 300 m AN, 2 JiK 11 B2 4K
P BLAT B0 (R mT P o AR SORI R U e 1l 35 60 o 5
TR B B M R B, U AR K 2 5 H PR R0
EAEZS 2 km &, X 5 Wan Z£2022)F i L e = B ik
MG R4 BT A5 2 E R K 2 HR R 2 2= 1 S B
HE R AR, A, T U0 % 021)F 5 5 =
JE R B IR POR T R, = IR I S R T
R K IR 3 BAE 3 1 J2 o, 55— AU e B i A 2—
3 km 55, 110 7 5 4% (2020) 43T H L 7 T ik R &
B, 2—4 km & RN 2 E R B (EIX, i g
WFFE 25 S0P 2 kem = 32 BR300 2 75 6 5 i 2 HR B 5
RIXIR . AR, U b L O i S O 2] fy B K
W2 S e BE B B0 A1 (K]5), 5 Wan 55(2022) F)
HIUE = & B IR ] ) AERE K = PIRZE B 2R M
JE W B A AR L. TR I LB s R ik
R R 737 B T 3K 20 ke, 33376 75 T L 3 ol O A i I
P PRI 5 5 10 km, PRI, 2 78 308 ] 4000 b S e e 55
FHEMIASE] ) 10 km PA_F 2, 53X H 15 Wan %5(2022)F)
FA U 7 8 38 UL 3 B 2 B0 46 g T b 35 ol O

1o JEL R (Xu et al., 2011), T H. 5 25 38 1 46 v b [X AR D
Y, RAKIRT R 5000, IF R0 I 3R G ik 21 0
PR R B T A v D R AR PR AR T b X/ | R A %
Tt R Gk B A R R AUKIRA R . I, Jule
HEAERE K = 1 B T b b X, H DR Fi
Pas [ (1} =g v v it <L o PR i I R R g
IRz H BRI B 45 H 76 LR b X 5 B T 285 (W (i 7
292 km 75 ), T AE A A i X5 LI TR 45 (T2 0 2 7
6.25 km =5 B, WIS ZTE 2.5 km 25 8). 9941, RAUKIR
FEOk AMERF AL, B MUZ KK EZ K
SOKIAR FEZE DTk, IR A 5 )2 KK H AR
fb(Wang, 2013 ; #5655, 2019). A HFFTEM, Bt
DX A% 2R ASKIREAT 1R & IR H AR AR
T 7 8 e J 4 J2 R AR YR B AR AR AR B2, B TR
I BEIA) 5 (Xu et al., 2011), 33Xl A ARFE K 2 H i)
Kz (DMK Fid = o 32) B0 A L A v b [X
B HASCRHE , 2R, LRIk = R R
5 R IR] g, I A o XA 2 B K i 7 TG
(Xu et al.,2021).

SIERCT RKAAKIR, = WS K AR RN
KAKKRMZEBYIMK . AP R ER, Uk
HBEEEAKZTHKRE o o RS KEE
43 514 0.665 .0.240 . 0.102 kg - m™, 33X $6 5 {15 4% T
Xu 55 (2021)F5- 21 il 1 v s X 3 LR K = R 2
s BRAS K2 (RN0.762.0.311,0.122 kg-m™),
IO 22 55 55 7 R SRR UK IR S AP AR b X A AR
KFKZRXu et al.,2011), 2Rifi7, B FILEAERFFEAK =
PME = FI R o 32, 1 5 2 H B (5% ~6%) i fIK T 1¢
HHBIX (219%~43%) , 3X i A3 U AR FE K 2= RS K i
FIME (294 0.433 kg - m™) S 1M i T A2 o L X (29
0.353 kg-m™) (Xu et al.,2021). ItAh, =BEKHE T
R AKX, MIAKEZAEETRS, IR (RS
K EEAR H AR5 H B H AR L B FRRAE , B L
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AR = RS K AR B R/ R BLR, 5L R =
PR H AZ AR R 5 148 rh i XA 2= B A K B A2
H ARG, 5 HAR = BR300 H AR EAR L 5224
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LR 2 BRI, PRI U e = S K AR 2
K BRAR SRR 55 , B W S 9 H AR AR

g5 ] WL b BRI R S X T 10 km LR =
JiG e B B B A BRI R g, T HL2 H R E 5 S
IR AR B YE A B0 )7 7 2 — (Westwater, 1978 Liljegren
et al., 2001 ; Crewell and Lohnert, 2003), il | 3 JE A7
FR SRR TR) 23 B3 Ry A o), B 4 KA B
SIOULIN PR S, 5 5 B Gl e A 3 s T %) Tk B JE
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WEE 2= B9 2O AE B FE A it Ty T B A
b, b BGOSR A T B2 A B A T R S
Y (Ware et al.,2003), Tfij H. b JE G008 58 5411 BC 209 IRT
AR E NI, X T 22 A0 km L B2
AIERIN , T3 15 B = 538 OGS R IR IR
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(1) JUE EZAE K 2 R H SH{EAE 67%~82%
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i FlE = 1 LR R I R & R IR, X 5
AN B 2 T LA 56 o JEREK =t B ) 1
LA RN HVETEAS (= AL T2 2 km 51 3
WA 80 38 1) 2 H BRI 2400 8.1% 5 52 RIS )2 4%
H AR AL, JERE K 25t B3 1) PR AR B AT SR L H
WES

) LI B AR K = A K R BIE 20 R
0.433 kg-m”, HH ik = . P = il = RS KR

{53529 4 0.665.0.240 F10.102 kg-m™, = HIHRA
IK AR R SR IR H AR fRRHE , BT
BB WA KA RN B K H = Rl = 1
TASIK B H AL FRE AN R o K= 19 B
WA/ 5 U2 R AR TR R ER R
AR AR AT 5

3) LB FHER K = R = Bt e /K A 5 (E
214 0.154 kg m?, i RKZHIFh =, Mok AR
P 2 e B i1 K= B I PU R 8 - o eB o [ 1 | 4
70.065.0.166 F10.102 kg-m™>, Ak FAEFEK z= A
KA L Ve K BEAR 1 5 L2 °R 34.3%~38.8% , 11 2
TR BEAR o LB 2 s B TS R AR 1 o LA
7.5%~10.9% , 1 5 IR Z. 2411 66.5%~73.3% , Tiii {7 == I
5, IR 3 100% , S A EE B2 A1 X0 3 Ve K B A
B PR s A K AR H AR L S RS
IKEEAEARRL, BV /NI ) K

(4) T 98 e 5 A v L X 22 ] R AR PRRRAE 22 57
TP 2 AR R K = A A RIFRE . Ul 2 2=k
KK 2= YR A HME(67%~82%) % T4 h 1 [X (83%~
95%), Hod LB AR 2= H B 38.(28 % ~43% )it /& T b
X (13%~28%), 1M JL I B 2~ HH R (5% ~6%) I X T-4£
HHEIX (219%~43%) . H1 T3 R UK IR T
X, U AR K = PR s = m BRAs
IKBEEIE TR HIX . SR, th FIURIERK =
Fr s BRI T R X, X AR LR AR K = Y
WRAS/K I RO & TR rh i, i B LR & = )
WA K AR B ARk 52 K PHE S5 1 ] il BH S8 AS an A
HiIX .
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