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Abstract: GRIST (Global-Regional Integrated forecast SysTem), the kilometer—scale variable—resolution (VR) model, combines the virtues
of both global and regional models. It can provide medium—term forecast products without lateral conditions while it is expected to reach a
forecast level similar to that of high—precision regional models. To evaluate GRIST’ s ability to simulate extreme weather events, this study
uses the VR version of GRIST to conduct a hindcast experiment on the extremely heavy rainfall event that occurred in North China from July
29 to August 2, 2023. The simulation results are evaluated against satellite—gauge merged precipitation analysis (China Merged Precipita-

tion Analysis, CMPA) and global reanalysis (the fifth generation of the European Center for Medium—Range Weather Forecasts atmospheric
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reanalysis of the global climate, ERAS) data, and are also compared with five other operational numerical models (including global models,
ECMWEF and CMA-GFS, as well as regional models, CMA-MESO, CMA-SH, and CMA-BJ). Results indicate that both GRIST and five oper-

ational models can reproduce the occurrence of this heavy rainfall event at various degrees. From 08 BT 30 July to 08 BT 1 August, the peri-

od with the strongest precipitation during the event, the simulation performance of GRIST is optimal. The spatial correlation coefficient be-

tween GRIST and CMPA can reach up to 0.85, and the TS scores of precipitation at various intensities are at the levels of regional model fore-

casts. GRIST accurately simulated the large—scale circulation characteristics during this process, encompassing the location and extent of the

Western Pacific Subtropical High, northward water vapor transport. Furthermore, it demonstrated a commendable capability in simulating the

distribution and intensity of storm—relative helicity, a key indicator of the local circulation. The precise representation of circulation condi-

tions at various scales by GRIST contributes significantly to its ability to characterize precipitation areas and the evolution of precipitation.
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Fig. 1 The spatial distribution of CMPA observed average daily precipitation
(unit: mm+d™") from 08:00 BT 29 July to 08:00 BT 2 August. (The black
dotted box in the figure indicates the key precipitation area, and the
black solid line box indicates the location of the two

precipitation centers during the process)
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Fig. 2 The horizontal resolution (the black contour, unit: km)
and the surface elevation (color—filled, units: m) of the

variable—resolution (VR) mesh of GRIST
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Table 1 The resolution of various models as well as the starting time and validation time of the “23+7” extreme precipitation event in North China.
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Fig. 3 The 24 h accumulated precipitation (units: mm) of (a) CMPA, (b) GRIST, (c) ECMWF, (d) CMA-GFS, (¢) CMA-MESO, (f) CMA-SH,
and (g) CMA-BJ from 08:00 BT on 29 July to 08:00 BT on 30 July. The numbers in Fig.3 b—g are the spatial

correlation coefficients (r) between each model and CMPA precipitation
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Fig. 4 The evaluation results of (a) TS, (b) POD, (c) FAR, and (d) BIAS for the 24 h accumulated precipitation from 08:00 BT on July 29 2023

to 08:00 BT on July 30 2023, in each model simulation are categorized into precipitation intervals

of [0.1, 25] mm, [25, 50) mm, [50, 100) mm and [100, 250) mm
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Fig. 5 Same as Fig. 3, but for the 24 h accumulated precipitation (unit: mm) from 08:00 BT on 30 July 2023 to 08:00 BT on 31 July 2023
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