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Some issues in studies on the atmospheric instability of convective storms
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Abstract: Atmospheric instability is one of the necessary conditions for the occurrence of severe convective weather, which is characterized
by its intricacies. This paper first briefly reviews the air parcel theory and points out its limitations in application, for example, changes in
pressure and vorticity of the environmental atmosphere inevitably caused by the strong upward motion of parcels in convective storms. Then,
the concepts of static instability, symmetric instability, and other types of instability are reviewed. A special focus is given to summarizing
the conditions for conditional instability, moist absolute instability, and conditional symmetric instability, as well as their relationship with
the occurrence and development of convective storms, with some misunderstandings being clarified. The most effective method for determin-
ing conditional instability is to make a finite virtual displacement of the parcel and then use convective available potential energy (CAPE) for
identification. However, the calculation of CAPE and convective inhibition is sensitive to the temperature and moisture of the parcel, and
they should be computed and corrected using virtual temperature. The optimal CAPE value has better representativeness than that of the sur-
face—based CAPE. In strong vertical wind shear and low CAPE environments, the acceleration effect of dynamic disturbance pressure gradi-
ent caused by rotation is crucial for the development of severe convective storms. Convective instability does not necessarily correspond to
conditional instability. A straightforward method for distinguishing conditional symmetric instability is to use saturated equivalent geostroph-
ic potential vorticity. We further summarize the mesoscale rainband characteristics caused by this type of instability.
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Fig. 1 Skew T-log p diagrams from (a) Guilin and (b, ¢) Shanghai stations at 20:00 BT on April 30, 2021 (The red solid line represents the temperature profile,

the blue line the dew point profile, and the deep red solid line the saturated pseudo equivalent potential temperature (9; profile, the magenta line the pseudo

equivalent potential temperature @, profile, the solid blue line the potential temperature @ profile, and the black solid line the uplift curve. The starting

points of the uplift curve in panel (a) and panel (c) are the maximum 6, within the lower 200 hPa levels near the ground. The starting point of the

uplift curve in panel (b) is the position at the pressure of 747 hPa, temperature of 8 °C, and dew point of 1 °C. The red—filled

area represents the positive area, while the blue—filled area represents the negative area. Same hereinafter)
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Fig. 2 Skew T-logp diagrams from Beijing station for (a) 08:00 BT sounding, (b) corrected sounding,
() 14:00 BT sounding, and (d) 20:00 BT sounding on July 26, 2011
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o A5 T2 R FER S IRAE |
PRI ESAS B (0P il S8 (el AR 22 ORI (7% 30 5 R ¢
BEBUEB A 73 AT 5 R ™ b B R SRR R 22, T

CAPE Fl CIN B X} i 26 132 22 L1 4 U8 (Crook, 1996) o
B UL BRI ZS ST, TR B
SRR UL PRV T T 2 A S B A= TR e T ORI 1)
AL, 3 PR A ORI AR A A A RS, 2y
X} CAPE 1 CIN [ iR 2%

WHTHTAR , “SHE” B EEA RS R RIRAE RS
WS I VEA G2 3, SR 2 R A e M 28
e, A RSP S S R AR A, Al
CAPE fI6ffi CIN (£ 7505, 2014); 1 HL RIS
Fhid BB IR 575 I VKA Rt 23X CAPE B34
T B, JE R TR RS, PR Z s A
RIA A BT 232 223 S8 A BT R R )
FRRIVER A LTI ABE 2 R P UM 7KiEE
YIS A 4 AR A . 1H5R CAPE ff Fl i
s Rt BRI AR 5 TR BEY) NS B T S AR
B, BRI /N . Markowski A1 Richardson (2010)
it , SEBR X i XU N SRR BT RN B B
fifi FH CAPE TR 1/3~1/2, Fe BT/,
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CAPE [T WA %5 Bk (0 e G 1R 1, R4
588 X5} 30 XU P X S e 3 AR /DN 5 QAR R R 1
TEHAEH, 5E 555 3 7 X FRASERE A 2% .

2.4 BEHRXVIZ{K CAPEIME G

MBI AR S = A e i 2R RO R UK A5
PR, 185 A B K B CAPE AR 1) 0—6 km I
BB A ) T8 % 5K K (Brooks et al., 2003), {H
% IR Z= 1 i 4 L XUD)AE K CAPE 3855 (8]
HSLC) 288 72 A A o 2k KX DK B S SRR
LTI R 50T, e R AR MO 2
R XTI R G =4 T A—F I EFR2 % L -
B (Schneider et al., 2006; Davis and Parker, 2014),
FHLE T BA 5 CAPE BYEREE , HSLC A4S T 5806 i K<
(1) TR R 2R A AT, 2l 55 T4 i Bk i 22— (Sherburn
and Parker,2014),

HSLC 1952 X (Schneider et al., 20063 Sherburn and
Parker, 2014) 41 F : SBCAPE (3 T #bh 75 S #1249
CAPE) <500 J-kg', MUCAPE<1 000 J -kg',0—6 km
T ADAE = 18m-s",

KT AT HSLC M SO (15 1T+
TR R HEIE LA EK & , Sherburn Fl Parker (2019)
il CM (X DR ERARBLRIF 5 T HSLC Sk
b T 5 3R ) A SAIL TR, & BRI Z 5 2 A e L TR
T HSLC PREE 14 1 2 30 g sk 2L A G, 3L
HIGZ AR L B s iR | 380m) L A e A
ik CAPE #1555 N JU H # % ; Wade Fl Parker (2021)fifi J1]
BRI ST T HSLC P8 (148 9 Ak e pIL il
£ CAPE fEAR/INE , 8 IA E 2L fh s i sh SRR
SR T T B T 1 TS B, 1200 ) e R
{EAL T RAMIZ . Conrad Fl Knupp (2019) % He 43t
T KA ZE HSLC IREE h i RE 2 ad B, D /K - D) A
ANFRUE & I AR B TT BERILH 2 —

R HAT, 1A WL SCERHZ AT 25 T R
] 58 X I R AR A R SR HEATAILERAF 5 o H DIl 55 T
B E 2020462 F 14 A 17 24, LA BB
HiRp I A5 T T %5 % R RR 1) VKRS (R = 45, 2022)
B K VKB NS, B K /NI R 2k 30.7 mm Ho& AR iy
16 I (%) BF 55 4% 14 4 SBCAPE #F %& MUCAPE 2}y
200 J kg .0—6 km FEEL XA L) 4 20 m-s™, Ja T LAY
(1 HSLC PR Ay 5 X 3 KA 3], T 38 I 838 7% 12 XL
F FLAT B S 00 /N ROBE TR e RAAIE , (LA i — 2B R A BT
WFIe,

3 XFFRAFARE FO R AT 7T
XFRANTEE WA S B E AR RE , 20 T XK

AFEE BRI AT E o T H T X FRATEE B 4E ]
FRARIFRATRE o MRTFRATRE LG SR X PR TR
FE (CST) RN AE X FR AR E (PST) T B B S, CSI
FIAAEATEEA I 22 R 2k

XA A R T A BT N, P2
A7 IR S5 28 A3 2 KT b Bt 4 %o By (U0 Ry b e £
B, A AN B i) B, MR IS IR 0
th AU A WA A5 LT 22 R (AT An] 5 ) B 3l 0 et
BN I HAL 3 5 ) 0 B, PR R ARG e 1Y,
rh R AN ERE 1Y AR OLRS D5 ] P2 T 46 S5 07 R T
ORI FRATRE , X IR A KRS S , Hit
WA T RFRATRE o XFRAFRE ) B Al 2
i, EHEATRE M T#H I ARENLG G Kb
CREFRT AR KA AR R SRk~ T — A
KI5 18], BISFEAT T2 — K7 10)

FUBNBAREXS Ty B2 AR — R AR AR E
FHE . AAERTFRATRE R BT E i A, A A]
VA 25 M 240 X Sl ( M ) T ) 2 b 3 4 Bl
(B AT AL RE(SCAPEME N HI G o 2T 2% AFA
R, SRR FRANER A 2 A8 X AR AR R E
8, TR AL RN BRI AT FRERE 1Y 5 QAT RITR , RIE 5%
P17 1 & SRR R G A BRSO J5 15 2 R AL
JE A B FRASER AE (Schultz and Schumacher, 1999),

i HI /N K S0 7% 1Y 2% A X BN B g A i
&, X TR AN A FE R BT AT ) (B
TP AE 5 A5 1 7 ) ) AT P 6, BERE R T M,
00,
oz

M,
M, T 6, B R s TERE X M, R AR 4
XFBl i, 5 WIAREF A 0 PR AN FRE 1 BEE FE Al (Schultz
and Schumacher, 1999),

2 F CAPE, 7] LA %E X SCAPE (Emanuel, 1994),
“ORAEXTRRANTRE ) B FI P & SCAPE>0, SCAPE
RAENTHE S M, T 4B THBRE R BAT ) R T RES
fig, B HK 2 sh A iz sh 4l . {Hffi F SCAPE >k
VR ABUR AT 2 75 e JR ) i AN SR AR, 32282
PRI« 1) R 2 UL 55 46448 SCAPE B TRIME ; 2) 3
B E TS BRI 388 H () SCAPE {ELAR X457 5 3) B
i CAPE % /NB}, SCAPE 5 CAPE A He 1 & /NMA
(Schultz and Schumacher, 1999),

FATEAEASRR E (R 5 T FR B X AR E), 40

06 . 06 oy
5| <0Bi—| <O URRNELEX PR R E

(PSI) (Emanuel, 1994; Schultz and Schumacher, 1999),

3 %, B

<0 ILE M, -0, X F U

R
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e M, -0, M, -0, KF i TR
N et i R TR N s 29 0 S [ e e R
i ELY) AR T5 1) 5 AFA] LAGE e (o 34 B ( PV, )R
S FRATRE , ANk AN RE A H KA S B o 358
(PV RAG] . X T HXFRATE , PV, <0 5% F44F
SFRAFAE , MPV, <0, MPV, {60 I Hb % 437 34154
JE 5 X T TEX FRONERE , MPV, <0 , MPV, i il
RIS . 2l AN RE A FH A SERR I AR A
PR (MPV ) BE A F90R B ( MPV )] 51l 2
MBI FRAERAE o

AR AT SO I EATRRE” , I E X RN TR
FE AN FE R T AR R AR A, T BRI Y
AT e RN FRER A Y o

CST 38 A= E 5 A DX [ BRFUT , 2 85 1 T 2%
TR R P 2 ) L P . CST 2y X g
W7 18 5 2T DU R (Seltzer et al., 1985 ; Schultz and
Schumacher, 1999; fir/N§h 45, 2020): 1) AR £ 5) ,
DR H 2 i R I 1 T A FH i 38, AR T 2
SMBA LG, 2) W R R RS CS1Z B R s
TOFIAE S AT IR A R DG 3) TEM RN 557 iR A
o Xof b Sy e SR TR 22 (8], QSRR 2 CSTAR 1,
TR A U A R AUBAR S AR A E T E T 4) T
LT 2 HOBURHES , 5 BB R T 1 38 5 AN i ik
150, {HJ2, BB ATELE CSI, A7 A2 B IR R P 45
4, AT e RsRIE AR, 5) R CSI T 4% 4
SRR , R I AT DL 4RSS 2/ N X AT
RESEE A A rnian AU ER . 6) R it iy
fih % 388 LU HE BLURRT RS 5y 5 URDAHR 1 b A
WA I m-s, BE/NTELHERL . 7)H T CSHEE
NFH R Z b H= A i R R R e A
Fo 8) CSIANREAE [l T-MAHE XTIt , PR A Ak i %o i
1) 2 A T TR A fE CSTL KIS AHE THX = A5

4 HARBIARTIE

IEERHF ISR E K EFRN IEEATRE,
EESE TR D)L AR IRE = 5 R R Y
PBATEE A RPN R AT E , Rk A EEAS
THIA B RE Rt o I R ANERUE FIRHE AR E s
TRBATESE , T8 HEE R B0 T DL, LA <
Ji€ 1) 4 sl I TRk ANARE (Holton , 2004)

HORUE G g IR E AN ARUE (HL AR A TRERE A
FE), A8 HTIRZ BRI B, 2 FEUK- g
T M - 07 5 PR JE PR U4 X I M 5%
P JEE (Ol 2 b 5% 1 J3E MR X i J3E 2 T 2 /N T,

INT R BB AR E , 3% H HhBE T A E Y 20R
A BT 5 67 AR 8 B DI, KPR 2 48 100 km 7]
K10 me s DL b BB TEARER B2 Hb DX, AR B2 Ry 171
{8, H 5 #5308 B 22 AN F 2 1) IX 38 (Markowski and
Richardson, 2010), XA FEE & T8 LAY AR
JE , MR AT e WRR ) B R .

YRR E 25— R RIEARE , SR8 4k
12 B Y PR A 8 ST AL , e T A AR BN i S
11175 DR A AR S T AFRE PR, AMS WARHS ) Z I 2%
AFa 7E (American Meteorological Society, 2024), £ $f 7K
DI AN E A D) AN E (RITF RS- i 2%
ARE  K-HAFEE), K-H AFaE 27 35 B A A
F1RY TR J22 S A4S ) 79 PR T g AN, 3R oA B ) Bt
YIS TR BT IR SC-Z I 2% (K-H 1) o

K—H A8 1E AR E IR USSP RERS ™ A Rk
Wi 140 B g PN IR 2 i 5 A R 8 7K VRN 23T LB TR
R Z (billow cloud), X 88 R KNI IR - M 2% =~
(K-H =) (Oblack,2020),

LRI B IR Z R AT R S AR — 2N i
i@, 38 PR 22 A i e, R ) mT R D Y 2 — w2
TRV U722 5 B A Fa 2 I 51 i (Conrad and Knupp,
2019), i B Z AT FE Rk S h iy fig 5 b T E R UL
AU B KT 168 B A kg T I8 A O (Weisman,
1993 ; Schenkman and Xue , 2016) ; #iy =UiE H 2SR
BT e S K-HAEEAHE( Montgomery et al.,2002) .,

AT — BN E R B ) AR 3 [E AR TR iy
AFE LGS SRR AR E (CISK) B 3 -CISK
(wave—CISK) FIT SR B X FRAFRE S . KA
HE AT A= AR K4 A, DA Al 1 CTSK
P, X Al T E ) N TR 1Y CISK i R 2
wave—CISK. wave-CISK FIf&4E CISK 2 [ f) 3= 22 X Jjl
TET A58 CISK & A7 B i1 7R EE SR AR & o
wave—CISK EELEFERK IR R I B (A0 A XU)
PEhA R b A SR Y, A7 AN wave—CISK ] LAH]
K it T 22 PRAROGHIAT FIREZR 1) 2 45 (Cotton et al., 2011),
8 H FTZ AL b A A — 28 5 RO IR )22
SERH GBI L (5 IR R4 1]/ 0 (Lin, 2007)

5 B&

WK R R AFAEE 5 T ATRE , 46 30 1A AR
SE HIAEE BRI S S ATRE S, B
RS oM . AR STl 2 B T RS RS
R T RIS ATRE FMEATEE M FRATRE |
T M| - DT A FEATEE FHAL 2 b 2RI E I,
RS TR NERE I CST G K S 3 X
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F43%

TR RBISER M T R0 CAPE FI CIN 1158 ()
PRI, [R) B X — S S RN A R A TRHEA T T, L
T HSLC 5% 15 ) i KU & JR LR AT CST T 8 rh
REETNHRRIE . A FEL5E T

(1) SHBR R BAR AT AR S IR R e S
(WA TH, R A s s s s <
JE AR AR AR L B e A F A o

(2) 2k TF A S AR B/ 4007 B8 1 R A
P <0 XPFRMMI YRR LA
BRI SR H 51 CAPE fE

(3) 115 CAPE il % SR FHR 4 0 285 AR 5
FPHTHEIRITIE . CAPE F1 CIN XHG T He f IR 1R
PLARERURE , (H CAPE XJ 7K PR ) A8 Ak BE AUR% , CIN X i
428 P B ORI CAPE” AN 5 (R U5 o

(4) 7 ELA M HetR B0 R 6 R Ge v, an i
2 RV AR R AR G T A B X
RSB IIR T ST BB AR AR E

(5) X HRAEAT B KR 0L % 2 e Sk o B ) i) 45 1
ANFRE R CST R 7 i, {ELfSE FE 0 R 380 e 2 7 343 35 1]
Wi CSTIR R T o AR e A 2 0 i 3 i
X, B4 B WSR2 B A BRAR IR PG 2l A 2 N
S5, CSUMZAM AR E A I & FEAAAE . Sl
S BRI A 3 H TR TR A S L (H BT
A 55 TR B

(6) 7E HSLC FREEH i %o it WU 1) 5% | T3 )
T b 3 )R R 2 VT AFI 5 , 35K 6 3R JE 119 3l 1 B sl S A
JESTET M FRIE R T E - THE S

(7) VIAE ARG A2 5 08 R 1) /N IRUBE TR e T AR
K. CISK ,wave—CISK FIXJ FR AR RE [R] 5y 1 it Sy 44
% 1B wave—CISK F I FHZRE /Ny o
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